A218275 a(n) is the smallest n-isolated prime, or a(n)=0 if there are no n-isolated primes.
5, 7, 11, 89, 359, 211, 1913, 2053, 1087, 1657, 4177, 2503, 7993, 6917, 4327, 11213, 5623, 24281, 54251, 17257, 31397, 62383, 85991, 25523, 37747, 35617, 259907, 143053, 188107, 181361, 369581, 1179109, 290317, 190471, 206699, 370261, 1130863, 162143
Offset: 2
Keywords
Examples
a(5) = 89 because there are no primes except 89 in the interval [5*prevprime(89/5), 5*nextprime(89/5)] = [5*17, 5*19] = [85, 95]. And 89 is the smallest such prime - for example, if q = 37 < 89, then the interval [5*nextprime(q/5), 5*nextprime(q/5)] = [5*7,5*11] = [35,55] contains 4 primes other than 41, namely 37, 43, 47, and 53. - _Vladimir Shevelev_, Nov 04 2012.
Links
- Zak Seidov, Table of n, a(n) for n = 2..200
- V. Shevelev, Ramanujan and Labos Primes, Their Generalizations, and Classifications of Primes, Journal of Integer Sequences, Vol. 15 (2012), Article 12.5.4
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2
Programs
-
Mathematica
s = {}; Do[a = 2; b = 3; While[(p = NextPrime[k*a]) != NextPrime[k*b, -1], a = b; b = NextPrime[b]]; AppendTo[s, p], {k, 2, 40}]; s (* Zak Seidov, Nov 04 2012 *)
Formula
nextprime(a(n)/n) < nextprime(a(n))/n. For n>=5 and every prime q from the interval (3*n, a(n)), the interval (n*prevprime(q/n), n*nextprime(q/n)) contains a prime greater than q. - Vladimir Shevelev, Nov 04 2012
Comments