cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A218277 Convolution of level 3 of the divisor function.

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 10, 15, 24, 33, 45, 65, 77, 102, 143, 155, 180, 268, 255, 315, 434, 435, 462, 695, 593, 735, 960, 918, 945, 1437, 1160, 1395, 1825, 1692, 1668, 2549, 1995, 2385, 3073, 2775, 2730, 4190, 3157, 3747, 4739, 4290, 4140, 6355, 4686, 5523, 7044
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

Named W3(n) by S. Alaca and K. S. Williams.

Crossrefs

Programs

  • Maple
    f:= n -> add(numtheory:-sigma(m)*numtheory:-sigma(n-3*m),m=1..floor((n-1)/3)):
    map(f, [$1..50]); # Robert Israel, Jun 28 2018
    with(numtheory): seq((1/72)*(31*sigma[3](n) - sigma[3](3*n) + 7*sigma(n) - sigma(3*n) - 30*n*sigma(n) + 6*n*sigma(3*n)), n=1..50); # Ridouane Oudra, Mar 21 2021
  • Mathematica
    a[n_] := Sum[DivisorSigma[1, m] DivisorSigma[1, n-3m], {m, 1, (n-1)/3}];
    Array[a, 50] (* Jean-François Alcover, Sep 19 2018 *)
  • PARI
    lista(n) = {for (i=1, n, s = sum(m=1, floor((i-1)/3), sigma(m)*sigma(i-3*m)); print1(s , ", "););}
    
  • PARI
    lista(n) = {for (i=1, n, v = sigma(i,3)/24 - i*sigma(i)/12 + sigma(i)/24;if (i%3 == 0, v += 3*sigma(i/3,3)/8 - i*sigma(i/3)/4 + sigma(i/3)/24); print1(v , ", "););}

Formula

a(n) = Sum_{m<3n} sigma(m)*sigma(n-3*m).
a(n) = sigma3(n)/24 - n*sigma(n)/12 + sigma(n)/24 + 3*sigma3(n/3)/8 - n*sigma(n/3)/4 + sigma(n/3)/24.
a(n) = (1/72)*(31*sigma_3(n) - sigma_3(3*n) + 7*sigma(n) - sigma(3*n) - 30*n*sigma(n) + 6*n*sigma(3*n)). - Ridouane Oudra, Mar 21 2021

A218278 Convolution of level 4 of the divisor function.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 4, 7, 9, 21, 20, 36, 35, 66, 52, 101, 84, 147, 120, 224, 160, 285, 220, 394, 281, 483, 360, 680, 455, 750, 560, 1025, 680, 1116, 800, 1512, 969, 1575, 1148, 2088, 1330, 2160, 1540, 2860, 1771, 2838, 2024, 3734, 2286, 3651, 2640, 4816, 2925
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

Named W4(n) by S. Alaca and K. S. Williams.

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(sigma(k)*sigma(n-4*k), k=1..floor(n/4)), n=1..70); # Ridouane Oudra, Nov 23 2022
  • PARI
    a(n) = {for (i=1, n, s = sum(m=1, floor((i-1)/4), sigma(m)*sigma(i-4*m));print1(s , ", "););}
    
  • PARI
    a(n) = {for (i=1, n, v = sigma(i,3)/48 - i*sigma(i)/16 + sigma(i)/24;if (i%4 == 0, v += sigma(i/4,3)/3 - i*sigma(i/4)/4 + sigma(i/4)/24);if (i%2 == 0, v += sigma(i/2,3)/16);print1(v , ", "););}

Formula

a(n) = Sum_{m<4n} sigma(n)*sigma(n-4*m).
a(n) = sigma_3(n)/48 - n*sigma(n)/16 + sigma(n)/24 + sigma_3(n/4)/3 - n*sigma(n/4)/4 + sigma(n/4)/24 + sigma_3(n/2)/16.
a(n) = (1/48)*(sigma_3(n) + 2*sigma(n) - 3*n*sigma(n)) + (1/768)*((1 + (-1)^n))*(173*sigma_3(n) - 21*sigma_3(2*n) + 28*sigma(n) - 12*sigma(2*n) - 168*n*sigma(n) + 72*n*sigma(2*n)). - Ridouane Oudra, Nov 23 2022

A346193 Convolution of level 5 of the divisor function.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 4, 7, 6, 15, 17, 27, 34, 36, 52, 64, 75, 91, 102, 122, 155, 169, 193, 228, 263, 276, 326, 349, 415, 430, 500, 520, 620, 681, 727, 741, 881, 880, 1090, 1020, 1192, 1178, 1375, 1513, 1590, 1557, 1809, 1756, 2274, 2024, 2323, 2245, 2626, 2865
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[DivisorSigma[1, k] * DivisorSigma[1, n - 5*k], {k, 1, (n - 1)/5}]; Array[a, 100]
    (* or *)
    c[n_] := SeriesCoefficient[q * (QPochhammer[q] * QPochhammer[q^5])^4, {q, 0, n}]; a[n_] := 5 * DivisorSigma[3, n]/312 + If[Divisible[n, 5], 125 * DivisorSigma[3, n/5]/312, 0] - n * DivisorSigma[1, n]/20 - If[Divisible[n, 5], n * DivisorSigma[1, n/5]/4, 0] + DivisorSigma[1, n]/24 + If[Divisible[n, 5], DivisorSigma[1, n/5]/24, 0] - c[n]/130; Array[a, 100]

Formula

a(n) = Sum_{k < n/5} sigma(k) * sigma(n-5*k).
a(n) = 5*sigma_3(n)/312 + 125*sigma_3(n/5)/312 + (1/24 - n/20)*sigma(n) + (1/24 - n/4)*sigma(n/5) - c_5(n)/130, where sigma_3(n/5) = sigma(n/5) = 0 if n is not divisible by 5, and c_5(n) is the coefficient of q^n in the expansion of (eta(q) * eta(q^5))^4 (A030210).
Showing 1-3 of 3 results.