A218276 Convolution of level 2 of the divisor function.
0, 0, 1, 3, 7, 16, 22, 45, 49, 100, 95, 178, 161, 304, 250, 465, 372, 676, 525, 952, 720, 1280, 946, 1702, 1217, 2156, 1570, 2764, 1925, 3376, 2360, 4185, 2912, 4944, 3404, 6121, 4047, 6960, 4858, 8344, 5530, 9600, 6391, 11246, 7513, 12496, 8372, 14926, 9486
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- S. Alaca and K. S. Williams, Evaluation of the convolution sums ..., Journal of Number Theory, Volume 124, Issue 2, June 2007, Pages 491-510.
- E. Royer, Evaluating convolutions of divisor sums with quasimodular forms, International Journal of Number Theory 3, 2 (2007), Pages 231-261.
Programs
-
Maple
with(numtheory): seq((1/48)*(22*sigma[3](n) - 2*sigma[3](2*n) + 5*sigma(n) - sigma(2*n) - 24*n*sigma(n) + 6*n*sigma(2*n)),n=1..60); # Ridouane Oudra, Feb 23 2021
-
Mathematica
Table[Sum[DivisorSigma[1, k]*DivisorSigma[1, n - 2*k], {k, 1, Floor[(n - 1)/2]}], {n, 1, 50}] (* G. C. Greubel, Dec 24 2016 *)
-
PARI
lista(nn) = {for (i=1, nn, s = sum(m=1, floor((i-1)/2), sigma(m)*sigma(i-2*m)); print1(s , ", "););}
-
PARI
lista(nn) = {for (i=1, nn, v = sigma(i,3)/12 - i*sigma(i)/8 + sigma(i)/24;if (i%2 == 0, v += sigma(i/2,3)/3 - i*sigma(i/2)/4 + sigma(i/2)/24); print1(v , ", "););}
Formula
a(n) = Sum_{m < 2*n} sigma(n)*sigma(n - 2*m).
a(n) = sigma_3(n)/12 + sigma_3(n/2)/3 - n*sigma(n)/8 - n*sigma(n/2)/4 + sigma(n)/24 + sigma(n/2)/24.
a(n) = (1/48)*(22*sigma_3(n) - 2*sigma_3(2*n) + 5*sigma(n) - sigma(2*n) - 24*n*sigma(n) + 6*n*sigma(2*n)). - Ridouane Oudra, Feb 23 2021
Comments