A218277 Convolution of level 3 of the divisor function.
0, 0, 0, 1, 3, 4, 10, 15, 24, 33, 45, 65, 77, 102, 143, 155, 180, 268, 255, 315, 434, 435, 462, 695, 593, 735, 960, 918, 945, 1437, 1160, 1395, 1825, 1692, 1668, 2549, 1995, 2385, 3073, 2775, 2730, 4190, 3157, 3747, 4739, 4290, 4140, 6355, 4686, 5523, 7044
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- S. Alaca and K. S. Williams, Evaluation of the convolution sums ..., Journal of Number Theory, Volume 124, Issue 2, June 2007, Pages 491-510.
- E. Royer, Evaluating convolutions of divisor sums with quasimodular forms, arXiv:math/0510429 [math.NT], 2005-2006; International Journal of Number Theory 3, 2 (2007), Pages 231-261.
Programs
-
Maple
f:= n -> add(numtheory:-sigma(m)*numtheory:-sigma(n-3*m),m=1..floor((n-1)/3)): map(f, [$1..50]); # Robert Israel, Jun 28 2018 with(numtheory): seq((1/72)*(31*sigma[3](n) - sigma[3](3*n) + 7*sigma(n) - sigma(3*n) - 30*n*sigma(n) + 6*n*sigma(3*n)), n=1..50); # Ridouane Oudra, Mar 21 2021
-
Mathematica
a[n_] := Sum[DivisorSigma[1, m] DivisorSigma[1, n-3m], {m, 1, (n-1)/3}]; Array[a, 50] (* Jean-François Alcover, Sep 19 2018 *)
-
PARI
lista(n) = {for (i=1, n, s = sum(m=1, floor((i-1)/3), sigma(m)*sigma(i-3*m)); print1(s , ", "););}
-
PARI
lista(n) = {for (i=1, n, v = sigma(i,3)/24 - i*sigma(i)/12 + sigma(i)/24;if (i%3 == 0, v += 3*sigma(i/3,3)/8 - i*sigma(i/3)/4 + sigma(i/3)/24); print1(v , ", "););}
Formula
a(n) = Sum_{m<3n} sigma(m)*sigma(n-3*m).
a(n) = sigma3(n)/24 - n*sigma(n)/12 + sigma(n)/24 + 3*sigma3(n/3)/8 - n*sigma(n/3)/4 + sigma(n/3)/24.
a(n) = (1/72)*(31*sigma_3(n) - sigma_3(3*n) + 7*sigma(n) - sigma(3*n) - 30*n*sigma(n) + 6*n*sigma(3*n)). - Ridouane Oudra, Mar 21 2021
Comments