cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218277 Convolution of level 3 of the divisor function.

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 10, 15, 24, 33, 45, 65, 77, 102, 143, 155, 180, 268, 255, 315, 434, 435, 462, 695, 593, 735, 960, 918, 945, 1437, 1160, 1395, 1825, 1692, 1668, 2549, 1995, 2385, 3073, 2775, 2730, 4190, 3157, 3747, 4739, 4290, 4140, 6355, 4686, 5523, 7044
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

Named W3(n) by S. Alaca and K. S. Williams.

Crossrefs

Programs

  • Maple
    f:= n -> add(numtheory:-sigma(m)*numtheory:-sigma(n-3*m),m=1..floor((n-1)/3)):
    map(f, [$1..50]); # Robert Israel, Jun 28 2018
    with(numtheory): seq((1/72)*(31*sigma[3](n) - sigma[3](3*n) + 7*sigma(n) - sigma(3*n) - 30*n*sigma(n) + 6*n*sigma(3*n)), n=1..50); # Ridouane Oudra, Mar 21 2021
  • Mathematica
    a[n_] := Sum[DivisorSigma[1, m] DivisorSigma[1, n-3m], {m, 1, (n-1)/3}];
    Array[a, 50] (* Jean-François Alcover, Sep 19 2018 *)
  • PARI
    lista(n) = {for (i=1, n, s = sum(m=1, floor((i-1)/3), sigma(m)*sigma(i-3*m)); print1(s , ", "););}
    
  • PARI
    lista(n) = {for (i=1, n, v = sigma(i,3)/24 - i*sigma(i)/12 + sigma(i)/24;if (i%3 == 0, v += 3*sigma(i/3,3)/8 - i*sigma(i/3)/4 + sigma(i/3)/24); print1(v , ", "););}

Formula

a(n) = Sum_{m<3n} sigma(m)*sigma(n-3*m).
a(n) = sigma3(n)/24 - n*sigma(n)/12 + sigma(n)/24 + 3*sigma3(n/3)/8 - n*sigma(n/3)/4 + sigma(n/3)/24.
a(n) = (1/72)*(31*sigma_3(n) - sigma_3(3*n) + 7*sigma(n) - sigma(3*n) - 30*n*sigma(n) + 6*n*sigma(3*n)). - Ridouane Oudra, Mar 21 2021