A218301 E.g.f. A(x) satisfies A( x/(exp(x)*cosh(x)) ) = exp(3*x)*cosh(3*x).
1, 3, 24, 252, 3360, 55008, 1074816, 24499968, 639744000, 18856765440, 619897847808, 22502300590080, 894419152404480, 38651030120693760, 1804765006764441600, 90574514900736933888, 4862862027933962207232, 278158492957848901779456, 16889663645642083220324352
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 3*x + 24*x^2/2! + 252*x^3/3! + 3360*x^4/4! + 55008*x^5/5! +... where A(x) = cosh(3*x) + 3*4^0*cosh(4*x)*x + 3*5^1*cosh(5*x)*x^2/2! + 3*6^2*cosh(6*x)*x^3/3! + 3*7^3*cosh(7*x)*x^4/4! + 3*8^4*cosh(8*x)*x^5/5! +...
Links
- Eric Weisstein's World of Mathematics, Lambert W-Function.
Crossrefs
Programs
-
PARI
{a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(X)*cosh(X)))); Egf=exp(3*R)*cosh(3*R); n!*polcoeff(Egf,n)} for(n=0,25,print1(a(n),", "))
-
PARI
/* Formula derived from a LambertW identity: */ {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,3*(k+3)^(k-1)*cosh((k+3)*X)*x^k/k!); n!*polcoeff(Egf,n)} for(n=0,25,print1(a(n),", "))
Formula
E.g.f.: A(x) = Sum_{n>=0} 3*(n+3)^(n-1) * cosh((n+3)*x) * x^n/n!.
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( 3*x - 3*LambertW(-x * exp(x)) ).
a(n) = 3/2 * Sum_{k=0..n} (k+3)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 3/2 * Sum_{k>=0} (k+3)^(k-1) * x^k/(1 - (k+3)*x)^(k+1). (End)
Comments