cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218320 Number of ways to write n as n = a*b*c*d with 1 <= a <= b <= c <= d <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 6, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 11, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 9, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 11, 5, 2, 1, 11, 2
Offset: 1

Views

Author

Michel Lagneau, Oct 25 2012

Keywords

Comments

Starts the same as, but is different from A001055. First values of n such that a(n) differs from A001055(n) are 32, 48, 64, 72, 80, ... .
The value of a is the same for all numbers n with the same prime signature. For prime p we have a(p^n) = A001400(n), the number of partitions of n into at most 4 parts. - Alois P. Heinz, Nov 03 2012

Examples

			a(12) = 4 because we can write 12 = 1*1*1*12 = 1*1*2*6 = 1*1*3*4 = 1*2*2*3.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 90 do:t1:=0: for a from 1 to n do: for b from a to n do :for c from b to n do : for d from c to n do :if a*b*c*d = n then t1:=t1+1: else fi: od: od: od: od:printf(`%d, `,t1):od:
    # second Maple program
    with(numtheory):
    b:= proc(n, i, t) option remember;
          `if`(n=1, 1, `if`(t=1, `if`(n<=i, 1, 0),
           add(b(n/d, d, t-1), d=select(x->x<=i, divisors(n)))))
        end:
    a:= proc(n) local l, m;
          l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
          m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
          b(m, m, 4)
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 03 2012
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==1, 1, If[t==1, If[n <= i, 1, 0], Sum[b[n/d, d, t-1], {d, Select[Divisors[n], # <= i&]}]]];
    a[n_] := (l = Sort[FactorInteger[n], #1[[2]] > #2[[2]]&]; m = Times @@ Power @@@ l; b[m, m, 4]);
    Array[a, 100] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *)