cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218321 Number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k>=0.

Original entry on oeis.org

1, 2, 8, 39, 212, 1230, 7458, 46689, 299463, 1957723, 12996879, 87383754, 593794311, 4071599216, 28136612051, 195756911831, 1370068168916, 9639404836227, 68138551870047, 483682445360748, 3446462104490724, 24642148415136556, 176743014104068411
Offset: 0

Views

Author

Alois P. Heinz, Oct 25 2012

Keywords

Examples

			a(2) = 8: [(0,0),(1,0),(1,1),(2,1),(2,2)], [(0,0),(1,0),(1,1),(2,2)], [(0,0),(1,0),(2,0),(2,1),(2,2)], [(0,0),(1,0),(2,1),(2,2)], [(0,0),(1,0),(2,2)], [(0,0),(1,1),(2,1),(2,2)], [(0,0),(1,1),(2,2)], [(0,0),(2,1),(2,2)].
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
          add(b(x-i, y-1), i=0..x) +add(b(x-1, y-j), j=0..y) -b(x-1,y-1)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..30);
    # second Maple program gives series:
    series(RootOf(x^4*T^4-(x^2+1)*x^2*T^3-(x^2-2*x-2)*x*T^2-(x^2+1)*T+1, T), x=0, 31);  # Mark van Hoeij, Apr 17 2013
  • Mathematica
    b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - i, y - 1], {i, 0, x}] + Sum[b[x - 1, y - j], {j, 0, y}] - b[x - 1, y - 1]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 01 2022, after Alois P. Heinz *)

Formula

G.f.: (sqrt(x^4+4*x^3+2*x^2-8*x+1)+x^2+1-sqrt(2*(x^4+2*x^3-6*x^2-4*x+1+(x^2+1)*sqrt(x^4+4*x^3+2*x^2-8*x+1))))/(4*x^2). - Mark van Hoeij, Apr 17 2013