A218336 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(11) listed in ascending order.
1, 2, 5, 10, 3, 4, 6, 8, 12, 15, 20, 24, 30, 40, 60, 120, 7, 14, 19, 35, 38, 70, 95, 133, 190, 266, 665, 1330, 16, 48, 61, 80, 122, 183, 240, 244, 305, 366, 488, 610, 732, 915, 976, 1220, 1464, 1830, 2440, 2928, 3660, 4880, 7320, 14640, 25, 50, 3221, 6442
Offset: 1
Examples
Triangle begins: 1, 2, 5, 10; 3, 4, 6, 8, 12, 15, 20, 24, 30, 40, ... 7, 14, 19, 35, 38, 70, 95, 133, 190, 266, ... 16, 48, 61, 80, 122, 183, 240, 244, 305, 366, ... 25, 50, 3221, 6442, 16105, 32210, 80525, 161050; ...
Links
- Alois P. Heinz, Rows n = 1..23, flattened
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Eric Weisstein's World of Mathematics, Polynomial Order
Crossrefs
Programs
-
Maple
with(numtheory): M:= proc(n) M(n):= divisors(11^n-1) minus U(n-1) end: U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: T:= n-> sort([M(n)[]])[]: seq(T(n), n=1..5);
-
Mathematica
M[n_] := M[n] = Divisors[11^n - 1] ~Complement~ U[n-1]; U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]]; T[n_] := Sort[M[n]]; Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)
Formula
T(n,k) = k-th smallest element of M(n) = {d : d|(11^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.