A218337 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(13) listed in ascending order.
1, 2, 3, 4, 6, 12, 7, 8, 14, 21, 24, 28, 42, 56, 84, 168, 9, 18, 36, 61, 122, 183, 244, 366, 549, 732, 1098, 2196, 5, 10, 15, 16, 17, 20, 30, 34, 35, 40, 48, 51, 60, 68, 70, 80, 85, 102, 105, 112, 119, 120, 136, 140, 170, 204, 210, 238, 240, 255, 272, 280, 336
Offset: 1
Examples
Triangle begins: : 1, 2, 3, 4, 6, 12; : 7, 8, 14, 21, 24, 28, 42, 56, 84, 168; : 9, 18, 36, 61, 122, 183, 244, 366, 549, ... : 5, 10, 15, 16, 17, 20, 30, 34, 35, ... : 30941, 61882, 92823, 123764, 185646, 371292;
Links
- Alois P. Heinz, Rows n = 1..20, flattened
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Eric Weisstein's World of Mathematics, Polynomial Order
Programs
-
Maple
with(numtheory): M:= proc(n) M(n):= divisors(13^n-1) minus U(n-1) end: U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: T:= n-> sort([M(n)[]])[]: seq(T(n), n=1..5);
-
Mathematica
M[n_] := Divisors[13^n-1] ~Complement~ U[n-1]; U[n_] := If[n == 0, {}, M[n] ~Union~ U[n-1]]; T[n_] := Sort[M[n]]; Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
Formula
T(n,k) = k-th smallest element of M(n) = {d : d|(13^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.