cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218338 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(17) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 8, 16, 3, 6, 9, 12, 18, 24, 32, 36, 48, 72, 96, 144, 288, 307, 614, 1228, 2456, 4912, 5, 10, 15, 20, 29, 30, 40, 45, 58, 60, 64, 80, 87, 90, 116, 120, 145, 160, 174, 180, 192, 232, 240, 261, 290, 320, 348, 360, 435, 464, 480, 522, 576, 580, 696, 720
Offset: 1

Views

Author

Alois P. Heinz, Oct 26 2012

Keywords

Examples

			Triangle begins:
      1,      2,      4,      8,      16;
      3,      6,      9,     12,      18,  24, 32, 36, 48, 72, ...
    307,    614,   1228,   2456,    4912;
      5,     10,     15,     20,      29,  30, 40, 45, 58, 60, ...
  88741, 177482, 354964, 709928, 1419856;
		

Crossrefs

Column k=7 of A212737.
Column k=1 gives: A218361.
Row lengths are A212957(n,17).

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(17^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..5);
  • Mathematica
    M[n_] := M[n] = Divisors[17^n-1] ~Complement~ U[n-1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
    T[n_] := Sort[M[n]];
    Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) = {d : d|(17^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.