cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218348 Hilltop maps: number of n X 2 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or vertical neighbor in a random 0..1 nX2 array.

Original entry on oeis.org

3, 11, 41, 149, 547, 2007, 7361, 27001, 99043, 363299, 1332617, 4888173, 17930307, 65770159, 241251521, 884934705, 3246028995, 11906758971, 43675182633, 160204937605, 587647732323, 2155550649479, 7906775346689, 29002842683433
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2012

Keywords

Comments

Number of dominating sets in the ladder graph P_2 X P_n. - Andrew Howroyd, May 10 2017

Examples

			Some solutions for n=3
..1..0....1..1....0..1....1..0....1..1....1..1....0..1....0..0....1..0....0..1
..1..0....0..0....1..1....1..0....0..1....1..1....0..1....1..1....0..0....0..0
..0..1....1..1....0..1....1..0....1..0....1..0....1..0....0..0....0..1....1..0
		

Crossrefs

Column 2 of A218354.

Programs

  • Mathematica
    LinearRecurrence[{3, 2, 2, -1, -1}, {3, 11, 41, 149, 547}, 20]  (* Eric W. Weisstein, Jun 14 2017 *)
    CoefficientList[Series[(x (3 + 2 x + 2 x^2 - 2 x^3 - x^4))/(1 - 3 x - 2 x^2 - 2 x^3 + x^4 + x^5), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 14 2017 *)
    Table[RootSum[1 + # - 2 #^2 - 2 #^3 - 3 #^4 + #^5 &, (-167 + 525 # - 73 #^2 + 819 #^3 - 218 #^4) #^n &]/2102, {n, 20}] (* Eric W. Weisstein, Jul 13 2017 *)
  • PARI
    Vec((3+2*x+2*x^2-2*x^3-x^4)/(1-3*x-2*x^2-2*x^3+x^4+x^5)+O(x^50)) \\ Andrew Howroyd, May 10 2017

Formula

a(n) = 3*a(n-1) +2*a(n-2) +2*a(n-3) -a(n-4) -a(n-5).
G.f.: x*(3 + 2*x + 2*x^2 - 2*x^3 - x^4)/(1 - 3*x - 2*x^2 - 2*x^3 + x^4 + x^5). - Andrew Howroyd, May 10 2017