A218355 Number of partitions into distinct parts where all differences between consecutive parts are odd and the minimal part is even.
1, 0, 1, 0, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 2, 6, 2, 8, 3, 9, 5, 12, 7, 13, 9, 16, 13, 19, 17, 22, 23, 25, 29, 30, 37, 35, 46, 41, 58, 49, 70, 57, 85, 68, 103, 81, 123, 97, 145, 115, 172, 139, 201, 164, 236, 197, 274, 234, 318, 280, 368, 330, 425, 394, 488, 463, 561, 548, 644, 642, 738, 755, 844, 879, 965, 1029
Offset: 0
Keywords
Examples
The a(23) = 13 such partitions of 23 are: [ 1] 2 3 18 [ 2] 2 5 16 [ 3] 2 7 14 [ 4] 2 9 12 [ 5] 2 21 [ 6] 4 5 14 [ 7] 4 7 12 [ 8] 4 9 10 [ 9] 4 19 [10] 6 7 10 [11] 6 17 [12] 8 15 [13] 10 13
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A179049 (parts are odd, even, odd, even, ...).
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, b(n, i+2)+b(n-i, i+1))) end: a:= n-> b(n, 2): seq(a(n), n=0..100); # Alois P. Heinz, Nov 08 2012; revised Feb 24 2020
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n==0, 1-Mod[t, 2], If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[ b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 02 2015, after Alois P. Heinz *)
-
PARI
N=76; x='x+O('x^N); gf179080 = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n+1, 1-x^(2*k) ) ); gf179049 = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n, 1-x^(2*k) ) ); gf = gf179080 - gf179049; Vec( gf )
-
PARI
N=75; x='x+O('x^N); gf = sum(n=0, N, x^((n+1)*(n+4)/2) / prod(k=1, n+1, 1-x^(2*k) ) ); v2=Vec( gf )
-
Sage
# After Alois P. Heinz. def A218355(n): @cached_function def h(n, k): if n == 0: return 1 if k > n: return 0 return h(n, k+2) + h(n-k, k+1) return h(n, 2) print([A218355(n) for n in range(76)]) # Peter Luschny, Feb 25 2020
Comments