cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218355 Number of partitions into distinct parts where all differences between consecutive parts are odd and the minimal part is even.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 2, 6, 2, 8, 3, 9, 5, 12, 7, 13, 9, 16, 13, 19, 17, 22, 23, 25, 29, 30, 37, 35, 46, 41, 58, 49, 70, 57, 85, 68, 103, 81, 123, 97, 145, 115, 172, 139, 201, 164, 236, 197, 274, 234, 318, 280, 368, 330, 425, 394, 488, 463, 561, 548, 644, 642, 738, 755, 844, 879, 965, 1029
Offset: 0

Views

Author

Joerg Arndt, Oct 27 2012

Keywords

Comments

Parts are even, odd, even, odd, ... .

Examples

			The a(23) = 13 such partitions of 23 are:
[ 1]  2 3 18
[ 2]  2 5 16
[ 3]  2 7 14
[ 4]  2 9 12
[ 5]  2 21
[ 6]  4 5 14
[ 7]  4 7 12
[ 8]  4 9 10
[ 9]  4 19
[10]  6 7 10
[11]  6 17
[12]  8 15
[13]  10 13
		

Crossrefs

Cf. A179049 (parts are odd, even, odd, even, ...).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+2)+b(n-i, i+1)))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 08 2012; revised Feb 24 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, 1-Mod[t, 2], If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[ b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 02 2015, after Alois P. Heinz *)
  • PARI
    N=76; x='x+O('x^N);
    gf179080 = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n+1, 1-x^(2*k) ) );
    gf179049 = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n, 1-x^(2*k) ) );
    gf = gf179080 - gf179049;
    Vec( gf )
    
  • PARI
    N=75; x='x+O('x^N); gf = sum(n=0, N, x^((n+1)*(n+4)/2) / prod(k=1, n+1, 1-x^(2*k) ) ); v2=Vec( gf )
    
  • Sage
    # After Alois P. Heinz.
    def A218355(n):
        @cached_function
        def h(n, k):
            if n == 0: return 1
            if k  > n: return 0
            return h(n, k+2) + h(n-k, k+1)
        return h(n, 2)
    print([A218355(n) for n in range(76)]) # Peter Luschny, Feb 25 2020

Formula

G.f.: sum(n>=0, x^((n+1)*(n+4)/2) / prod(k=1..n+1, 1-x^(2*k) ) ).
a(n) = A179080(n) - A179049(n).