A218388 Bitwise OR of all divisors of n.
1, 3, 3, 7, 5, 7, 7, 15, 11, 15, 11, 15, 13, 15, 15, 31, 17, 31, 19, 31, 23, 31, 23, 31, 29, 31, 27, 31, 29, 31, 31, 63, 43, 51, 39, 63, 37, 55, 47, 63, 41, 63, 43, 63, 47, 63, 47, 63, 55, 63, 51, 63, 53, 63, 63, 63, 59, 63, 59, 63, 61, 63, 63, 127, 77, 127
Offset: 1
Examples
n=20: divisors(20) = {1, 2, 4, 5, 10, 20}, 00001 OR 00010 OR 00100 OR 00101 OR 01010 OR 10100 = 11111 -> a(20) = 31; n=21: divisors(21) = {1, 3, 7, 21}, 00001 OR 00011 OR 00111 OR 10101 = 10111 -> a(21) = 23; n=22: divisors(22) = {1, 2, 11, 22}, 00001 OR 00010 OR 01011 OR 10110 = 11111 -> a(22) = 31; n=23: divisors(23) = {1, 23}, 00001 OR 10111 = 10111 -> a(23) = 23; n=24: divisors(24) = {1, 2, 3, 4, 6, 8, 12, 24}, 00001 OR 00010 OR 00011 OR 00100 OR 00110 OR 01000 OR 01100 OR 11000 = 11111 -> a(24) = 31; n=25: divisors(25) = {1, 5, 25}, 00001 OR 00101 OR 11001 = 11101 -> a(25) = 29.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..8191
- Eric Weisstein's World of Mathematics, OR
- Wikipedia, Bitwise operation OR
- Index entries for sequences related to binary expansion of n
Programs
-
Haskell
import Data.Bits ((.|.)) a218388 = foldl1 (.|.) . a027750_row :: Integer -> Integer
-
Mathematica
Table[BitOr@@Divisors[n],{n,70}] (* Harvey P. Dale, Feb 27 2013 *)
Comments