A218243 Triangle numbers: m = a*b*c such that the integers a,b,c are the sides of a triangle with integer area.
60, 150, 200, 480, 780, 1200, 1530, 1600, 1620, 1690, 1950, 2040, 2100, 2730, 2860, 3570, 3840, 4050, 4056, 4200, 4350, 4624, 5100, 5400, 5460, 6240, 7500, 8120, 8250, 8670, 8750, 9600, 10812, 11050, 11900, 12180, 12240, 12800, 12960, 13260, 13520, 13650
Offset: 1
Keywords
Examples
60 is in the sequence because 60 = 3*4*5 and the corresponding area is sqrt(6*(6-3)*(6-4)*(6-5)) = 6 = A188158(1).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Triangle
Programs
-
Mathematica
nn = 500; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]], AppendTo[lst, a*b*c]]], {a, nn}, {b, a}, {c, b}]; Union[lst] (* Program from T. D. Noe, adapted for this sequence - see A188158 *)
-
PARI
Heron(a,b,c)=a*=a;b*=b;c*=c;((a+b+c)^2-2*(a^2+b^2+c^2)) is(n)=fordiv(n,a, if(a^3<=n, next); fordiv(n/a,b, my(c=n/a/b,h); if(a>=b && b>=c && aCharles R Greathouse IV, Oct 24 2012
Comments