A218431 Cyclic quadrilateral numbers: numbers m = a*b*c*d such that the integers a,b,c,d are the sides of a cyclic quadrilateral whose area and circumradius are integers.
2304, 36864, 57600, 186624, 230400, 451584, 589824, 630000, 806400, 921600, 1440000, 2073600, 2822400, 2985984, 3686400, 4665600, 5531904, 6969600, 7225344, 8960000, 9437184, 10080000, 12672000, 12902400, 14745600, 15116544, 16257024, 18662400, 19079424
Offset: 1
Examples
2304 is in the sequence because 2304 = 8*8*6*6 and we obtain: s = (8+8+6+6)/2 = 14; A = sqrt((14-8)*(14-8)*(14-6)*(14-6)) = 48; R = sqrt((8*8 + 6*6)*(8*6 + 8*6)*(8*6 + 8*6))/(4*48) = 5.
Links
- E. Gürel, Solution to Problem 1472, Maximal Area of Quadrilaterals, Math. Mag. 69 (1996), 149.
- Eric W. Weisstein, MathWorld: Cyclic Quadrilateral.
Crossrefs
Cf. A210250.
Programs
-
Mathematica
nn=200; lst={}; Do[s=(a+b+c+d)/2; If[IntegerQ[s], area2=(s-a)*(s-b)*(s-c)*(s-d); If[0
Extensions
Typos in comment fixed by Zak Seidov and M. F. Hasler, Sep 21 2013, Sep 21 2013
Comments