cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218438 G.f.: 1 / ( (1 + x^2 - x^3)^2 * (1 - x - 2*x^2 - x^3) ).

Original entry on oeis.org

1, 1, 1, 6, 12, 19, 48, 110, 218, 470, 1040, 2208, 4710, 10184, 21879, 46879, 100767, 216570, 464952, 998613, 2145312, 4607724, 9896436, 21257196, 45658624, 98068864, 210642412, 452440320, 971794317, 2087314717, 4483345053, 9629771966, 20683772420, 44426659559
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 6*x^3 + 12*x^4 + 19*x^5 + 48*x^6 + 110*x^7 +...
where
log(A(x)) = x + x^2/2 + 16*x^3/3 + 25*x^4/4 + 36*x^5/5 + 100*x^6/6 + 225*x^7/7 +...+ A001609(n)^2*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1+x^2-x^3)^2(1-x-2x^2-x^3)),{x,0,40}],x] (* or *) LinearRecurrence[{1,0,5,1,1,-3,-2,0,1},{1,1,1,6,12,19,48,110,218},40] (* Harvey P. Dale, Jan 23 2013 *)
  • PARI
    {a(n)=polcoeff(1/((1 + x^2 - x^3)^2*(1 - x*(1+x)^2+x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

Logarithmic derivative yields A218439, where A218439(n) = A001609(n)^2.
a(0)=1, a(1)=1, a(2)=1, a(3)=6, a(4)=12, a(5)=19, a(6)=48, a(7)=110, a(8)=218, a(n)=a(n-1)+5*a(n-3)+a(n-4)+a(n-5)-3*a(n-6)-2*a(n-7)+a(n-9). - Harvey P. Dale, Jan 23 2013