cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218439 a(n) = A001609(n)^2, where g.f. of A001609 is x*(1+3*x^2)/(1-x-x^3).

Original entry on oeis.org

1, 1, 16, 25, 36, 100, 225, 441, 961, 2116, 4489, 9604, 20736, 44521, 95481, 205209, 440896, 946729, 2033476, 4368100, 9381969, 20151121, 43283241, 92968164, 199685161, 428904100, 921243904, 1978737289, 4250127249, 9128847025, 19607840784, 42115658841
Offset: 1

Views

Author

Paul D. Hanna, Oct 28 2012

Keywords

Comments

A001609 equals the logarithmic derivative of Narayana's cows sequence A000930.

Examples

			O.g.f.: A(x) = x + x^2 + 16*x^3 + 25*x^4 + 36*x^5 + 100*x^6 + 225*x^7 +...
L.g.f.: L(x) = x + x^2/2 + 16*x^3/3 + 25*x^4/4 + 36*x^5/5 + 100*x^6/6 + 225*x^7/7 +...
where exponentiation yields the g.f. of A218438:
exp(L(x)) = 1 + x + x^2 + 6*x^3 + 12*x^4 + 19*x^5 + 48*x^6 + 110*x^7 +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x*(1 + 14*x^2 + 5*x^3 - 9*x^4 - 9*x^5)/((1 + x^2 - x^3)*(1 - x - 2*x^2 - x^3)), {x, 0, 50}], x]] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    {a(n)=polcoeff(x*(1+14*x^2+5*x^3-9*x^4-9*x^5)/((1+x^2-x^3)*(1-x-2*x^2-x^3+x*O(x^n))),n)}
    for(n=1,40,print1(a(n),", "))

Formula

O.g.f.: x*(1 + 14*x^2 + 5*x^3 - 9*x^4 - 9*x^5)/((1 + x^2 - x^3)*(1 - x - 2*x^2 - x^3)).
Logarithmic derivative of A218438.
a(n) = -2*(-1)^n*A112455(n) +3*A002478(n) -2*A002478(n-1)-2*A002478(n-2), n>1. - R. J. Mathar, Oct 28 2012