A218472 Number of 3n-length n-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
1, 1, 4, 61, 1810, 82593, 5153626, 410380885, 39868799482, 4579454148865, 607729841261560, 91553310170011501, 15441283593044256696, 2883254656878648757729, 590578881927993264483880, 131681888589427990097216549, 31753512197914767223878851626
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Crossrefs
Diagonal of A213027.
Programs
-
Maple
a:= n-> `if`(n<2, 1, add(binomial(3*n, j)*(n-j)*(n-1)^j, j=0..n-1)/n): seq(a(n), n=0..20);
Formula
a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*(n-1)^j for n>1, a(n) = 1 else.
a(n) ~ 3^(3*n + 1/2) * n^(n - 5/2) / (sqrt(Pi) * exp(1) * 2^(2*n+2)). - Vaclav Kotesovec, Mar 25 2016