A218475 Number of 3n-length 5-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
1, 1, 13, 217, 4085, 82593, 1751197, 38413481, 864413317, 19842830065, 462825376685, 10937407206265, 261311076852245, 6301225556698177, 153160687795008445, 3748598210810053449, 92303640047399410341, 2285025852515378528913, 56836898766186234593485
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Crossrefs
Column k=5 of A213027.
Programs
-
Maple
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*4^j, j=0..n-1)/n): seq(a(n), n=0..20);
Formula
a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*4^j for n>0, a(0) = 1.
Recurrence: n*(2*n-1)*(4*n-5)*a(n) = (1216*n^3 - 2452*n^2 + 1267*n - 120)*a(n-1) - 750*(3*n-5)*(3*n-4)*(4*n-1)*a(n-2). - Vaclav Kotesovec, Aug 31 2014
a(n) ~ 4 * 3^(3*n+1/2) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 31 2014