cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218480 Number of 3n-length 10-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.

Original entry on oeis.org

1, 1, 28, 1027, 42850, 1929043, 91320022, 4480436836, 225785025802, 11617042380355, 607729841261560, 32227411217273515, 1728444323307664720, 93593058046710649012, 5109705135623767855960, 280954986758729989837624, 15544627425243191634814666
Offset: 0

Views

Author

Alois P. Heinz, Oct 29 2012

Keywords

Comments

In general, column k of A213027 is (for k > 1) asymptotic to a(n) ~ 3^(3*n+1/2) * (k-1)^(n+1) / (sqrt(Pi) * (2*k-3)^2 * 4^n * n^(3/2)). - Vaclav Kotesovec, Aug 31 2014

Crossrefs

Column k=10 of A213027.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*9^j, j=0..n-1)/n):
    seq(a(n), n=0..20);

Formula

a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*9^j for n>0, a(0) = 1.
Recurrence: 2*n*(2*n-1)*(13*n-15)*a(n) = (55159*n^3 - 95963*n^2 + 38478*n - 1080)*a(n-1) - 27000*(3*n-5)*(3*n-4)*(13*n-2)*a(n-2). - Vaclav Kotesovec, Aug 31 2014
a(n) ~ 3^(5*n+5/2) / (289 * sqrt(Pi) * 4^n * n^(3/2)). - Vaclav Kotesovec, Aug 31 2014