A218480 Number of 3n-length 10-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
1, 1, 28, 1027, 42850, 1929043, 91320022, 4480436836, 225785025802, 11617042380355, 607729841261560, 32227411217273515, 1728444323307664720, 93593058046710649012, 5109705135623767855960, 280954986758729989837624, 15544627425243191634814666
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Column k=10 of A213027.
Programs
-
Maple
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*9^j, j=0..n-1)/n): seq(a(n), n=0..20);
Formula
a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*9^j for n>0, a(0) = 1.
Recurrence: 2*n*(2*n-1)*(13*n-15)*a(n) = (55159*n^3 - 95963*n^2 + 38478*n - 1080)*a(n-1) - 27000*(3*n-5)*(3*n-4)*(13*n-2)*a(n-2). - Vaclav Kotesovec, Aug 31 2014
a(n) ~ 3^(5*n+5/2) / (289 * sqrt(Pi) * 4^n * n^(3/2)). - Vaclav Kotesovec, Aug 31 2014
Comments