A218496 4th iteration of the hyperbinomial transform on the sequence of 1's.
1, 5, 33, 281, 2993, 38705, 592489, 10516441, 212841889, 4845154913, 122664558905, 3421333467689, 104297273041969, 3451364116327249, 123251578626936841, 4725537745859375705, 193647372258547916609, 8447809104669814884545, 390938955429073736493145
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Crossrefs
Column k=4 of A144303.
Programs
-
Maple
a:= n-> add(4*(n-j+4)^(n-j-1)*binomial(n,j), j=0..n): seq (a(n), n=0..20);
Formula
E.g.f.: exp(x) * (-LambertW(-x)/x)^4.
a(n) = Sum_{j=0..n} 4 * (n-j+4)^(n-j-1) * C(n,j).
Hyperbinomial transform of A089464.
a(n) ~ 4*exp(4+exp(-1))*n^(n-1). - Vaclav Kotesovec, Aug 16 2013
Comments