cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218497 5th iteration of the hyperbinomial transform on the sequence of 1's.

Original entry on oeis.org

1, 6, 46, 441, 5156, 71801, 1166886, 21756251, 458803176, 10814534541, 282098765426, 8074875680471, 251807768368956, 8501320507058801, 309046115586282726, 12039399243732745851, 500492026353038459216, 22119195334250297991701, 1035767312348853244634586
Offset: 0

Views

Author

Alois P. Heinz, Oct 30 2012

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.

Crossrefs

Column k=5 of A144303.

Programs

  • Maple
    a:= n-> add(5*(n-j+5)^(n-j-1)*binomial(n,j), j=0..n):
    seq (a(n), n=0..20);
  • Mathematica
    Table[Sum[5*(n-j+5)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)

Formula

E.g.f.: exp(x) * (-LambertW(-x)/x)^5.
a(n) = Sum_{j=0..n} 5 * (n-j+5)^(n-j-1) * C(n,j).
Hyperbinomial transform of A218496.
a(n) ~ 5*exp(5+exp(-1))*n^(n-1). - Vaclav Kotesovec, Oct 18 2013