A218500 8th iteration of the hyperbinomial transform on the sequence of 1's.
1, 9, 97, 1233, 18209, 308129, 5901489, 126560849, 3010775745, 78805945665, 2253470828561, 69959985025841, 2345132738183841, 84468280694319713, 3254988169237833585, 133676275015986223569, 5830402582814375609729, 269227430712934320151169
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Crossrefs
Column k=8 of A144303.
Programs
-
Maple
a:= n-> add(8*(n-j+8)^(n-j-1)*binomial(n,j), j=0..n): seq (a(n), n=0..20);
-
Mathematica
Table[Sum[8*(n-j+8)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *) With[{nn=20},CoefficientList[Series[Exp[x](-LambertW[-x]/x)^8,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 04 2019 *)
Formula
E.g.f.: exp(x) * (-LambertW(-x)/x)^8.
a(n) = Sum_{j=0..n} 8 * (n-j+8)^(n-j-1) * C(n,j).
Hyperbinomial transform of A218499.
a(n) ~ 8*exp(8+exp(-1))*n^(n-1). - Vaclav Kotesovec, Oct 18 2013
Comments