A268283
Number of distinct directed Hamiltonian cycles of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).
Original entry on oeis.org
6, 12, 32, 60, 2560
Offset: 1
A218514
Number of n-colorings of the icosahedral graph.
Original entry on oeis.org
0, 0, 0, 0, 240, 80400, 4012560, 76848240, 825447840, 6005512800, 33014872800, 146953113120, 554770648080, 1835249610480, 5448481998960, 14778817981200, 37135461679680, 87386816771520, 194264943433920, 410876964198720, 831638579799600, 1618744884780240
Offset: 0
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.
- Eric M. Schmidt, Table of n, a(n) for n = 0..1000
- Eric W. Weisstein, Icosahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
A218514(n):=n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170)$
makelist(A218514(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
-
def A218514(n) : return n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170);
A296918
List of coefficients of reduced chromatic polynomial of dodecahedron, highest order terms first.
Original entry on oeis.org
1, 10, 56, 230, 759, 2112, 5104, 10912, 20880, 35972, 55768, 77152, 93538, 96396, 80572, 50808, 21302, 4412
Offset: 1
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69-70.
A296919
List of coefficients of chromatic polynomial of dodecahedron, highest order terms first.
Original entry on oeis.org
1, -30, 435, -4060, 27393, -142194, 589875, -2004600, 5673571, -13518806, 27292965, -46805540, 68090965, -83530946, 85371335, -71159652, 46655060, -22594964, 7171160, -1111968, 0
Offset: 1
The chromatic polynomial is x^20 - 30*x^19 + 435*x^18 - 4060*x^17 + 27393*x^16 - 142194*x^15 + 589875*x^14 - 2004600*x^13 + 5673571*x^12 - 13518806*x^11 + 27292965*x^10 - 46805540*x^9 + 68090965*x^8 - 83530946*x^7 + 85371335*x^6 - 71159652*x^5 + 46655060*x^4 - 22594964*x^3 + 7171160*x^2 - 1111968*x.
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69-70.
Showing 1-4 of 4 results.
Comments