A268283
Number of distinct directed Hamiltonian cycles of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).
Original entry on oeis.org
6, 12, 32, 60, 2560
Offset: 1
A218513
Number of n-colorings of the dodecahedral graph.
Original entry on oeis.org
0, 0, 0, 7200, 168506880, 112603286160, 15108392957760, 775405390866960, 20886647215714560, 353998543659193440, 4231366997071432320, 38508081275604409920, 281586666065022616320, 1720887594454493527920, 9053942417801770507200, 41955877772610102690480
Offset: 0
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See pp. 69-70.
- Eric M. Schmidt, Table of n, a(n) for n = 0..1000
- Eric W. Weisstein, Dodecahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
-
A218513(n):=n*(n-1)*(n-2)*(n^17 -27*n^16 +352*n^15 -2950*n^14 +17839*n^13 -82777*n^12 +305866*n^11 -921448*n^10 +2297495*n^9 -4783425*n^8 +8347700*n^7 -12195590*n^6 +14808795*n^5 -14713381*n^4 +11613602*n^3 -6892084*n^2 +2751604*n -555984)$
makelist(A218513(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
-
def A218513(n) : return n*(n-1)*(n-2)*(n^17 -27*n^16 +352*n^15 -2950*n^14 +17839*n^13 -82777*n^12 +305866*n^11 -921448*n^10 +2297495*n^9 -4783425*n^8 +8347700*n^7 -12195590*n^6 +14808795*n^5 -14713381*n^4 +11613602*n^3 -6892084*n^2 +2751604*n -555984);
A296916
List of coefficients of reduced chromatic polynomial of icosahedron, highest order terms first.
Original entry on oeis.org
1, -24, 260, -1670, 6999, -19698, 36408, -40240, 20170
Offset: 1
The reduced chromatic polynomial is x^8-24*x^7+260*x^6-1670*x^5+6999*x^4-19698*x^3+36408*x^2-40240*x+20170.
Multiplying by x*(x-1)*(x-2)*(x-3) and expanding we get the chromatic polynomial for the icosahedron, which is x^12 - 30*x^11 + 415*x^10 - 3500*x^9 + 20023*x^8 - 81622*x^7 + 241605*x^6 - 517360*x^5 + 780286*x^4 - 782108*x^3 + 463310*x^2 - 121020*x.
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.
A296917
List of coefficients of chromatic polynomial of icosahedron, highest order terms first.
Original entry on oeis.org
1, -30, 415, -3500, 20023, -81622, 241605, -517360, 780286, -782108, 463310, -121020, 0
Offset: 1
The polynomial is x^12 - 30*x^11 + 415*x^10 - 3500*x^9 + 20023*x^8 - 81622*x^7 + 241605*x^6 - 517360*x^5 + 780286*x^4 - 782108*x^3 + 463310*x^2 - 121020*x.
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.
A296919
List of coefficients of chromatic polynomial of dodecahedron, highest order terms first.
Original entry on oeis.org
1, -30, 435, -4060, 27393, -142194, 589875, -2004600, 5673571, -13518806, 27292965, -46805540, 68090965, -83530946, 85371335, -71159652, 46655060, -22594964, 7171160, -1111968, 0
Offset: 1
The chromatic polynomial is x^20 - 30*x^19 + 435*x^18 - 4060*x^17 + 27393*x^16 - 142194*x^15 + 589875*x^14 - 2004600*x^13 + 5673571*x^12 - 13518806*x^11 + 27292965*x^10 - 46805540*x^9 + 68090965*x^8 - 83530946*x^7 + 85371335*x^6 - 71159652*x^5 + 46655060*x^4 - 22594964*x^3 + 7171160*x^2 - 1111968*x.
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69-70.
Showing 1-5 of 5 results.
Comments