cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A218514 Number of n-colorings of the icosahedral graph.

Original entry on oeis.org

0, 0, 0, 0, 240, 80400, 4012560, 76848240, 825447840, 6005512800, 33014872800, 146953113120, 554770648080, 1835249610480, 5448481998960, 14778817981200, 37135461679680, 87386816771520, 194264943433920, 410876964198720, 831638579799600, 1618744884780240
Offset: 0

Views

Author

Eric M. Schmidt, Oct 31 2012

Keywords

References

  • N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.

Crossrefs

Programs

  • Maxima
    A218514(n):=n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170)$
    makelist(A218514(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
  • Sage
    def A218514(n) : return n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170);
    

Formula

a(n) = n(n-1)(n-2)(n-3)(n^8 -24n^7 +260n^6 -1670n^5 +6999n^4 -19698n^3 +36408n^2 -40240n +20170).
Hence a(n) = n^12 - 30*n^11 + 415*n^10 - 3500*n^9 + 20023*n^8 - 81622*n^7 + 241605*n^6 - 517360*n^5 + 780286*n^4 - 782108*n^3 + 463310*n^2 - 121020*n (cf. A296917) - N. J. A. Sloane, Dec 23 2017
G.f.: -240*x^4*(12547*x^8 +131518*x^7 +481078*x^6 +743494*x^5 +485740*x^4 +128698*x^3 +12442*x^2 +322*x +1)/(x-1)^13. [Colin Barker, Nov 06 2012]

A296916 List of coefficients of reduced chromatic polynomial of icosahedron, highest order terms first.

Original entry on oeis.org

1, -24, 260, -1670, 6999, -19698, 36408, -40240, 20170
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2017

Keywords

Comments

These are the coefficients when the chromatic polynomial of the icosahedron (see A296917) is divided by x*(x-1)*(x-2)*(x-3).

Examples

			The reduced chromatic polynomial is x^8-24*x^7+260*x^6-1670*x^5+6999*x^4-19698*x^3+36408*x^2-40240*x+20170.
Multiplying by x*(x-1)*(x-2)*(x-3) and expanding we get the chromatic polynomial for the icosahedron, which is x^12 - 30*x^11 + 415*x^10 - 3500*x^9 + 20023*x^8 - 81622*x^7 + 241605*x^6 - 517360*x^5 + 780286*x^4 - 782108*x^3 + 463310*x^2 - 121020*x.
		

References

  • N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.

Crossrefs

Showing 1-2 of 2 results.