cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A218514 Number of n-colorings of the icosahedral graph.

Original entry on oeis.org

0, 0, 0, 0, 240, 80400, 4012560, 76848240, 825447840, 6005512800, 33014872800, 146953113120, 554770648080, 1835249610480, 5448481998960, 14778817981200, 37135461679680, 87386816771520, 194264943433920, 410876964198720, 831638579799600, 1618744884780240
Offset: 0

Views

Author

Eric M. Schmidt, Oct 31 2012

Keywords

References

  • N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.

Crossrefs

Programs

  • Maxima
    A218514(n):=n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170)$
    makelist(A218514(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
  • Sage
    def A218514(n) : return n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170);
    

Formula

a(n) = n(n-1)(n-2)(n-3)(n^8 -24n^7 +260n^6 -1670n^5 +6999n^4 -19698n^3 +36408n^2 -40240n +20170).
Hence a(n) = n^12 - 30*n^11 + 415*n^10 - 3500*n^9 + 20023*n^8 - 81622*n^7 + 241605*n^6 - 517360*n^5 + 780286*n^4 - 782108*n^3 + 463310*n^2 - 121020*n (cf. A296917) - N. J. A. Sloane, Dec 23 2017
G.f.: -240*x^4*(12547*x^8 +131518*x^7 +481078*x^6 +743494*x^5 +485740*x^4 +128698*x^3 +12442*x^2 +322*x +1)/(x-1)^13. [Colin Barker, Nov 06 2012]

A296917 List of coefficients of chromatic polynomial of icosahedron, highest order terms first.

Original entry on oeis.org

1, -30, 415, -3500, 20023, -81622, 241605, -517360, 780286, -782108, 463310, -121020, 0
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2017

Keywords

Examples

			The polynomial is x^12 - 30*x^11 + 415*x^10 - 3500*x^9 + 20023*x^8 - 81622*x^7 + 241605*x^6 - 517360*x^5 + 780286*x^4 - 782108*x^3 + 463310*x^2 - 121020*x.
		

References

  • N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.

Crossrefs

Showing 1-2 of 2 results.