cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A218563 Numbers n such that n^2 + 1 is divisible by a 4th power.

Original entry on oeis.org

182, 239, 443, 807, 1068, 1432, 1693, 2057, 2318, 2682, 2943, 3307, 3568, 3932, 4193, 4557, 4818, 5182, 5443, 5807, 6068, 6432, 6693, 7057, 7318, 7682, 7943, 8307, 8568, 8932, 9193, 9557, 9818, 10182, 10443, 10807, 11068, 11432, 11693, 12057, 12318, 12682
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Comments

Includes all n == 182 or 443 (mod 625). In particular, the sequence has positive asymptotic density. # Robert Israel, Oct 06 2016

Examples

			239 is in the sequence because 239^2+1 = 57122 = 2*13^4;
27493 is in the sequence because 27493^2+1 = 755865050 = 2*5^2*17^4*181.
		

Crossrefs

Programs

  • Maple
    N:= 100000: # to get all terms <= N
    res:= {}:
    p:= 2;
    while p^4 <= N^2+1 do
      for v in map(t -> subs(t,n), [msolve(n^2+1, p^4)]) do
        res:= res union {seq(k*p^4+v, k = 0 .. (N-v)/p^4)}
      od;
      p:= nextprime(p);
    od:
    sort(convert(res,list)); # Robert Israel, Oct 06 2016
  • Mathematica
    Select[Range[2,13000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>3&]

A218564 Numbers n such that n^2 + 1 is divisible by a 5th power.

Original entry on oeis.org

1068, 2057, 4193, 5182, 7318, 8307, 10443, 11432, 13568, 14557, 16693, 17682, 19818, 20807, 22943, 23932, 26068, 27057, 29193, 30182, 32318, 33307, 35443, 36432, 38568, 39557, 41693, 42682, 44818, 45807, 47943, 48932, 51068, 52057, 54193, 55182, 57318, 58307
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Comments

For each prime p == 1 (mod 4), there are two values of x (mod p^5) that solve x^2 + 1 == 0 (mod p^5), and then x + k*p^5 is in the sequence for every k. Thus the asymptotic density of this sequence should be 1 - Product_p (1 - 2/p^5), where the product is over all primes p == 1 (mod 4). - Robert Israel, Sep 04 2018

Examples

			1068 is in the sequence because 1068^2+1 = 1140625 = 5^6*73;
143044 is in the sequence because 143044^2+1 = 20461585937 = 13^5*55109;
390112 is in the sequence because 390112^2+1 = 152187372545 = 5*13*17^6*97.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    P:= select(isprime,[seq(i,i=5..floor((N^2+1)^(1/5)),4)]):
    g:= proc(x,r,N) local t; t:= rhs(op(x)); seq(t+r*k,k=0..(N-t)/r) end proc:
    R:= `union`(seq(map(g, {msolve(n^2+1,p^5)},p^5,N),p=P)):
    sort(convert(R,list)); # Robert Israel, Sep 04 2018
  • Mathematica
    Select[Range[2,20000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>4&]
  • PARI
    isok(n) = vecmax(factor(n^2+1)[,2]) >= 5; \\ Michel Marcus, Sep 04 2018

A218565 Numbers k such that k^2 + 1 is divisible by a 6th power.

Original entry on oeis.org

1068, 14557, 16693, 30182, 32318, 45807, 47943, 61432, 63568, 77057, 79193, 92682, 94818, 108307, 110443, 123932, 126068, 139557, 141693, 155182, 157318, 170807, 172943, 186432, 188568, 202057, 204193, 217682, 219818, 233307, 235443, 248932, 251068, 264557
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Examples

			1068 is in the sequence because 1068^2 + 1 = 5^6 * 73.
390112 is in the sequence because 390112^2 + 1 = 5 * 13 * 17 ^ 6 * 97.
1999509 is in the sequence because 1999509^2 + 1 = 2 * 13 ^ 6 * 29 * 14281.
		

Crossrefs

Cf. A001014 (6th powers).

Programs

  • Mathematica
    Select[Range[2,27000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>5&]

A218574 Numbers k such that k^2 + 1 is divisible by a 7th power.

Original entry on oeis.org

32318, 45807, 110443, 123932, 188568, 202057, 266693, 280182, 344818, 358307, 422943, 436432, 501068, 514557, 579193, 592682, 657318, 670807, 735443, 748932, 813568, 827057, 891693, 905182, 969818, 983307
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Examples

			32318 is in the sequence because 32318^2 + 1 =  5 ^ 7 * 29 * 461.
6826318 is in the sequence because 6826318^2 + 1 = 5 ^ 3 * 13 ^ 8 * 457.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1500000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>6&]
Showing 1-4 of 4 results.