cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218570 Number of partitions p of n such that max(p)-min(p) = 7.

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 14, 18, 28, 34, 51, 63, 86, 108, 144, 175, 229, 278, 351, 425, 529, 630, 775, 919, 1109, 1309, 1565, 1827, 2167, 2518, 2952, 3414, 3975, 4563, 5281, 6036, 6931, 7889, 9012, 10200, 11598, 13078, 14785, 16613, 18704, 20925, 23470, 26174, 29229
Offset: 9

Views

Author

Alois P. Heinz, Nov 02 2012

Keywords

Programs

  • Mathematica
    terms = 49; offset = 9; max = terms + offset; s[k0_ /; k0 > 0] := Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; Drop[s[7], offset] (* Jean-François Alcover, Sep 11 2017, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>0} x^(2*k+7)/Product_{j=0..7} (1-x^(k+j)).
a(n) = A097364(n,7) = A116685(n,7) = A194621(n,7) - A194621(n,6) = A218509(n) - A218508(n).