A218577 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with maximal element k-1.
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 11, 1, 1, 31, 90, 74, 20, 1, 1, 63, 301, 402, 209, 37, 1, 1, 127, 966, 1951, 1629, 590, 70, 1, 1, 255, 3025, 8869, 10839, 6430, 1685, 135, 1, 1, 511, 9330, 38720, 65720, 56878, 25313, 4870, 264, 1
Offset: 1
Examples
Triangle starts: 1; 1, 1; 1, 3, 1; 1, 7, 6, 1; 1, 15, 25, 11, 1; 1, 31, 90, 74, 20, 1; 1, 63, 301, 402, 209, 37, 1; 1, 127, 966, 1951, 1629, 590, 70, 1; 1, 255, 3025, 8869, 10839, 6430, 1685, 135, 1; 1, 511, 9330, 38720, 65720, 56878, 25313, 4870, 264, 1; 1, 1023, 28501, 164676, 376114, 444337, 292695, 99996, 14209, 521, 1; ... The 53 ascent sequences of length 5 are (dots for zeros): [ #] ascent-seq. #max digit [ 1] [ . . . . . ] 0 [ 2] [ . . . . 1 ] 1 [ 3] [ . . . 1 . ] 1 [ 4] [ . . . 1 1 ] 1 [ 5] [ . . . 1 2 ] 2 [ 6] [ . . 1 . . ] 1 [ 7] [ . . 1 . 1 ] 1 [ 8] [ . . 1 . 2 ] 2 [ 9] [ . . 1 1 . ] 1 [10] [ . . 1 1 1 ] 1 [11] [ . . 1 1 2 ] 2 [12] [ . . 1 2 . ] 2 [13] [ . . 1 2 1 ] 2 [14] [ . . 1 2 2 ] 2 [15] [ . . 1 2 3 ] 3 [16] [ . 1 . . . ] 1 [17] [ . 1 . . 1 ] 1 [18] [ . 1 . . 2 ] 2 [19] [ . 1 . 1 . ] 1 [20] [ . 1 . 1 1 ] 1 [21] [ . 1 . 1 2 ] 2 [22] [ . 1 . 1 3 ] 3 [23] [ . 1 . 2 . ] 2 [24] [ . 1 . 2 1 ] 2 [25] [ . 1 . 2 2 ] 2 [26] [ . 1 . 2 3 ] 3 [27] [ . 1 1 . . ] 1 [28] [ . 1 1 . 1 ] 1 [29] [ . 1 1 . 2 ] 2 [...] [49] [ . 1 2 3 . ] 3 [50] [ . 1 2 3 1 ] 3 [51] [ . 1 2 3 2 ] 3 [52] [ . 1 2 3 3 ] 3 [53] [ . 1 2 3 4 ] 4 There is 1 sequence with maximum zero, 15 with maximum one, etc., therefore the fifth row is 1, 15, 25, 11, 1.
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 1..141, flattened (first 15 rows from Joerg Arndt)
- Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, Sergey Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations, arXiv:0806.0666 [math.CO], 2008-2009.
- William Y. C. Chen, Alvin Y.L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics Volume 20, Issue 1 (2013), #P76.
Comments