cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A022493 Fishburn numbers: number of linearized chord diagrams of degree n; also number of nonisomorphic interval orders on n unlabeled points.

Original entry on oeis.org

1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, 1422074, 10886503, 89903100, 796713190, 7541889195, 75955177642, 810925547354, 9148832109645, 108759758865725, 1358836180945243, 17801039909762186, 243992799075850037, 3492329741309417600, 52105418376516869150, 809029109658971635142
Offset: 0

Views

Author

Alexander Stoimenow (stoimeno(AT)math.toronto.edu)

Keywords

Comments

Claesson and Linusson calls these the Fishburn numbers, after Peter Fishburn. [Peter Clingerman Fishburn (1936-2021) was an American mathematician and a pioneer in the field of decision-making processes. - Amiram Eldar, Jun 20 2021]
Also, number of unlabeled (2+2)-free posets.
Also, number of upper triangular matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n. - Vladeta Jovovic, Mar 10 2008
Row sums of A193387.
Also number of ascent sequences of length n. - N. J. A. Sloane, Dec 10 2011
An ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) where asc(.) counts the ascents of its argument. - Joerg Arndt, Oct 17 2012
Replacing the function asc(.) above by a function chg(.) that counts changes in the prefix gives A000522 (arrangements). - Joerg Arndt, May 10 2013
Number of restricted growth strings (RGS) [d(0), d(1), d(2), ..., d(n-1)] such that d(0)=0, 0 <= d(k) <= k, and d(j) != d(k)+1 for j < k. - Joerg Arndt, May 10 2013
Number of permutations p(1),p(2),...,p(n) having no subsequence p(i),p(j),p(k) such that i+1 = j < k and p(k)+1 = p(i) < p(j); this corresponds to the avoidance of bivincular pattern (231,{1},{1}) in the terminology of Parviainen. Also, number of permutations p(1),...,p(n) with no subsequence p(i),p(j),p(k) with i+1 = j < k, p(i)+1 = p(k) < p(j). This is the bivincular pattern (132,{1},{1}). Proved by Bousquet-Mélou et al. and by Parviainen, respectively. - Vít Jelínek, Sep 05 2014

Examples

			From _Emanuele Munarini_, Oct 16 2012: (Start)
There are a(4)=15 ascent sequences (dots for zeros):
  01:  [ . . . . ]
  02:  [ . . . 1 ]
  03:  [ . . 1 . ]
  04:  [ . . 1 1 ]
  05:  [ . . 1 2 ]
  06:  [ . 1 . . ]
  07:  [ . 1 . 1 ]
  08:  [ . 1 . 2 ]
  09:  [ . 1 1 . ]
  10:  [ . 1 1 1 ]
  11:  [ . 1 1 2 ]
  12:  [ . 1 2 . ]
  13:  [ . 1 2 1 ]
  14:  [ . 1 2 2 ]
  15:  [ . 1 2 3 ]
(End)
From _Joerg Arndt_, May 10 2013: (Start)
There are a(4)=15 RGS of length 4 such that d(0)=0, 0 <= d(k) <= k, and d(j) != d(k)+1 for j < k (dots for zeros):
  01:  [ . . . . ]
  02:  [ . . . 1 ]
  03:  [ . . . 2 ]
  04:  [ . . . 3 ]
  05:  [ . . 1 1 ]
  06:  [ . . 1 2 ]
  07:  [ . . 1 3 ]
  08:  [ . . 2 . ]
  09:  [ . . 2 2 ]
  10:  [ . . 2 3 ]
  11:  [ . 1 1 1 ]
  12:  [ . 1 1 2 ]
  13:  [ . 1 1 3 ]
  14:  [ . 1 2 2 ]
  15:  [ . 1 2 3 ]
(End)
G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 53*x^5 + 217*x^6 + 1014*x^7 + 5335*x^8 + ...
		

References

  • P. C. Fishburn, Interval Graphs and Interval Orders, Wiley, New York, 1985.

Crossrefs

Cf. A079144 for the labeled analog, A059685, A035378.
Cf. A138265.
Cf. A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k), A175579 (ascent sequences with k zeros).
Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
Row sums of A294219, main diagonal of A294220.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1,
          add(b(n-1, j, t+`if`(j>i,1,0)), j=0..t+1))
        end:
    a:= n-> b(n-1, 0, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    max = 22; f[x_] := Sum[ Product[ 1-(1-x)^j, {j, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Sum[b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}] ]; a[n_] := b[n-1, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 09 2015, after Alois P. Heinz *)
  • Maxima
    F(x,n) := remainder(sum(product(1-(1-x)^i,i,1,k),k,0,n),x^(n+1));
    makelist(coeff(F(x,n),x^n),n,0,20); /* Emanuele Munarini, Oct 16 2012 */
    
  • PARI
    {a(n) = polcoeff( sum(i=0, n, prod(j=1, i, 1 - (1-x)^j, 1 + x * O(x^n))), n)}; /* Michael Somos, Jul 21 2006 */
    
  • Sage
    # Program adapted from Alois P. Heinz's Maple code.
    # b(n,i,t) gives the number of length-n postfixes of ascent sequences
    # with a prefix having t ascents and last element i.
    @CachedFunction
    def b(n, i, t):
        if n <= 1: return 1
        return sum(b(n - 1, j, t + (j > i)) for j in range(t + 2))
    def a(n): return b(n, 0, 0)
    [a(n) for n in range(66)]
    # Joerg Arndt, May 11 2013

Formula

Zagier gives the g.f. Sum_{n>=0} Product_{i=1..n} (1-(1-x)^i).
Another formula for the g.f.: Sum_{n>=0} 1/(1-x)^(n+1) Product_{i=1..n} (1-1/(1-x)^i)^2. Proved by Andrews-Jelínek and Bringmann-Li-Rhoades. - Vít Jelínek, Sep 05 2014
Coefficients in expansion of Sum_{k>=0} Product_{j=1..k} (1-x^j) about x=1 give (-1)^n*a(n). - Bill Gosper, Aug 08 2001
G.f.: 1 + x*Q(0), where Q(k) = 1 + (1-(1-x)^(2*k+2))/(1 - (1-(1-x)^(2*k+3))/(1 -(1-x)^(2*k+3) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f. (conjecture): Q(0), where Q(k) = 1 + (1 - (1-x)^(2*k+1))/(1 - (1-(1-x)^(2*k+2))/(1 -(1-x)^(2*k+2) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f.: 1 + z(1)/( 1+0 - z(2)/( 1+z(2) - z(3)/( 1+z(3) - z(4)/( 1+z(4) - z(5)/(...))))) where z(k) = 1 - (1-x)^k; this is Euler's continued fraction for 1 + z(1) + z(1)*z(2) + z(1)*z(2)*z(3) + ... . - Joerg Arndt, Mar 11 2014
Asymptotics (proved by Zagier, 2001; see also Brightwell and Keller, 2011): a(n) ~ (12*sqrt(3)*exp(Pi^2/12)/Pi^(5/2)) * n!*sqrt(n)*(6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014 [edited by Vít Jelínek, Sep 05 2014]
For any prime p that is not a quadratic residue mod 23, there is at least one value of j such that for all k and m, we have a(p^k*m - j) mod p^k = 0. E.g., for p=5 one may take j=1 and k=2, and conclude that a(25-1), a(50-1), a(75-1), a(100-1), ... are multiples of 25. See Andrews-Sellers, Garvan, and Straub. - Vít Jelínek, Sep 05 2014
From Peter Bala, Dec 17 2021: (Start)
Conjectural g.f.s:
A(x) = Sum_{n >= 1} n*(1 - x)^n*Product_{k = 1..n-1} (1 - (1 - x)^k).
x*A(x) = 1 - Sum_{n >= 1} n*(1 - x)^(2*n+1)*Product_{k = 1..n-1} (1 - (1 - x)^k). (End)

Extensions

Edited by N. J. A. Sloane, Nov 05 2011

A137251 Triangle T(n,k) read by rows: number of k X k triangular matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 26, 15, 1, 1, 15, 71, 98, 31, 1, 1, 21, 161, 425, 342, 63, 1, 1, 28, 322, 1433, 2285, 1138, 127, 1, 1, 36, 588, 4066, 11210, 11413, 3670, 255, 1, 1, 45, 1002, 10165, 44443, 79781, 54073, 11586, 511, 1, 1, 55, 1617, 23056, 150546, 434638, 528690, 246409, 36038, 1023, 1
Offset: 1

Views

Author

Vladeta Jovovic, Mar 11 2008

Keywords

Comments

Row sums are A022493.
Number of ascent sequences of length n with k-1 ascents, see example. [Joerg Arndt, Nov 03 2012]
Number of interval orders on n elements having exactly k maximal antichains. Also, number of interval orders on n elements having an interval representation with k distinct endpoints, but not with k-1 distinct endpoints. Also, number of interval orders on n elements whose elements define k distinct strict down-sets (a strict down-set defined by an element x of a poset (P,<) is the set {y in P: yVít Jelínek, Sep 06 2014

Examples

			Triangle starts:
01:  1,
02:  1,  1,
03:  1,  3,    1,
04:  1,  6,    7,     1,
05:  1, 10,   26,    15,      1,
06:  1, 15,   71,    98,     31,       1,
07:  1, 21,  161,   425,    342,      63,       1,
08:  1, 28,  322,  1433,   2285,    1138,     127,       1,
09:  1, 36,  588,  4066,  11210,   11413,    3670,     255,       1,
10:  1, 45, 1002, 10165,  44443,   79781,   54073,   11586,     511,      1,
11:  1, 55, 1617, 23056, 150546,  434638,  528690,  246409,   36038,   1023,    1,
12:  1, 66, 2497, 48400, 451515, 1968580, 3895756, 3316193, 1090517, 110930, 2047, 1,
...
From _Joerg Arndt_, Nov 03 2012: (Start)
The 53 ascent sequences of length 5 together with their numbers of ascents are (dots for zeros):
01:  [ . . . . . ]   0      28:  [ . 1 1 . 1 ]   2
02:  [ . . . . 1 ]   1      29:  [ . 1 1 . 2 ]   2
03:  [ . . . 1 . ]   1      30:  [ . 1 1 1 . ]   1
04:  [ . . . 1 1 ]   1      31:  [ . 1 1 1 1 ]   1
05:  [ . . . 1 2 ]   2      32:  [ . 1 1 1 2 ]   2
06:  [ . . 1 . . ]   1      33:  [ . 1 1 2 . ]   2
07:  [ . . 1 . 1 ]   2      34:  [ . 1 1 2 1 ]   2
08:  [ . . 1 . 2 ]   2      35:  [ . 1 1 2 2 ]   2
09:  [ . . 1 1 . ]   1      36:  [ . 1 1 2 3 ]   3
10:  [ . . 1 1 1 ]   1      37:  [ . 1 2 . . ]   2
11:  [ . . 1 1 2 ]   2      38:  [ . 1 2 . 1 ]   3
12:  [ . . 1 2 . ]   2      39:  [ . 1 2 . 2 ]   3
13:  [ . . 1 2 1 ]   2      40:  [ . 1 2 . 3 ]   3
14:  [ . . 1 2 2 ]   2      41:  [ . 1 2 1 . ]   2
15:  [ . . 1 2 3 ]   3      42:  [ . 1 2 1 1 ]   2
16:  [ . 1 . . . ]   1      43:  [ . 1 2 1 2 ]   3
17:  [ . 1 . . 1 ]   2      44:  [ . 1 2 1 3 ]   3
18:  [ . 1 . . 2 ]   2      45:  [ . 1 2 2 . ]   2
19:  [ . 1 . 1 . ]   2      46:  [ . 1 2 2 1 ]   2
20:  [ . 1 . 1 1 ]   2      47:  [ . 1 2 2 2 ]   2
21:  [ . 1 . 1 2 ]   3      48:  [ . 1 2 2 3 ]   3
22:  [ . 1 . 1 3 ]   3      49:  [ . 1 2 3 . ]   3
23:  [ . 1 . 2 . ]   2      50:  [ . 1 2 3 1 ]   3
24:  [ . 1 . 2 1 ]   2      51:  [ . 1 2 3 2 ]   3
25:  [ . 1 . 2 2 ]   2      52:  [ . 1 2 3 3 ]   3
26:  [ . 1 . 2 3 ]   3      53:  [ . 1 2 3 4 ]   4
27:  [ . 1 1 . . ]   1
There is 1 ascent sequence with no ascent, 10 with one ascent, etc., giving the fourth row [1, 10, 26, 15, 1].
(End)
		

References

  • Peter C. Fishburn, Interval Orders and Interval Graphs: Study of Partially Ordered Sets, John Wiley & Sons, 1985.

Crossrefs

Cf. A022493 (number of ascent sequences), A218577 (ascent sequences with maximal element k), A175579 (ascent sequences with k zeros).
T(2n,n) gives A357141.

Programs

  • Maple
    b:= proc(n, i, t) option remember; local j; if n<1 then [0$t, 1]
          else []; for j from 0 to t+1 do zip((x, y)->x+y, %,
          b(n-1, j, t+`if`(j>i, 1, 0)), 0) od; % fi
        end:
    T:= n-> b(n-1, 0, 0)[]:
    seq(T(n), n=1..12);  # Alois P. Heinz, May 20 2013
  • Mathematica
    zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]]; b[n_, i_, t_] := b[n, i, t] = Module[{j, pc}, If[n<1, Append[Array[0&, t], 1], pc = {}; For[j = 0, j <= t+1, j++, pc = zip[Plus, pc, b[n-1, j, t+If[j>i, 1, 0]], 0]]; pc]]; T[n_] := b[n-1, 0, 0]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 29 2014, after Alois P. Heinz *)

Formula

G.f.: Sum_{n,k>=1} T(n,k)x^n y^k = Sum_{n>=1} y^n Product_{i=1..n} (1-(1-x)^i)/(y+(1-x)^i-y*(1-x)^i). See Jelínek's paper, Corollary 2.5. - Vít Jelínek, Sep 06 2014

A175579 Triangle T(n,d) read by rows: Number of ascent sequences of length n with d zeros.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 21, 12, 4, 1, 53, 84, 54, 20, 5, 1, 217, 380, 270, 110, 30, 6, 1, 1014, 1926, 1490, 660, 195, 42, 7, 1, 5335, 10840, 9020, 4300, 1365, 315, 56, 8, 1, 31240, 67195, 59550, 30290, 10255, 2520, 476, 72, 9, 1, 201608, 455379, 426405
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

The first column and the row sums are both A022493.
Also the number of length-n ascent sequences with k fixed points. [Joerg Arndt, Nov 03 2012]

Examples

			The triangle starts:
01:       1;
02:       1,      1;
03:       2,      2,      1;
04:       5,      6,      3,      1;
05:      15,     21,     12,      4,     1;
06:      53,     84,     54,     20,     5,     1;
07:     217,    380,    270,    110,    30,     6,    1;
08:    1014,   1926,   1490,    660,   195,    42,    7,   1;
09:    5335,  10840,   9020,   4300,  1365,   315,   56,   8,  1;
10:   31240,  67195,  59550,  30290, 10255,  2520,  476,  72,  9,  1;
11:  201608, 455379, 426405, 229740, 82425, 21448, 4284, 684, 90, 10, 1;
...
From _Joerg Arndt_, Mar 05 2014: (Start)
The 15 ascent sequences of length 4 (dots for zeros) together with their numbers of zeros and numbers of fixed points are:
01:    [ . . . . ]   4   1
02:    [ . . . 1 ]   3   1
03:    [ . . 1 . ]   3   1
04:    [ . . 1 1 ]   2   1
05:    [ . . 1 2 ]   2   1
06:    [ . 1 . . ]   3   2
07:    [ . 1 . 1 ]   2   2
08:    [ . 1 . 2 ]   2   2
09:    [ . 1 1 . ]   2   2
10:    [ . 1 1 1 ]   1   2
11:    [ . 1 1 2 ]   1   2
12:    [ . 1 2 . ]   2   3
13:    [ . 1 2 1 ]   1   3
14:    [ . 1 2 2 ]   1   3
15:    [ . 1 2 3 ]   1   4
Both statistics give row 4: [5, 6, 3, 1].
(End)
		

Crossrefs

Cf. A022493 (number of ascent sequences), A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k).
Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
T(2n,n) gives A357309.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
          `if`(j=0, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, -1$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == 0, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, -1, -1]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
  • PARI
    {T(n,d)=polcoeff(polcoeff(sum(m=0,n+1,prod(j=0,m-1,(1-(1-x)^j*(1-x*y) +x^2*y^2*O(x^n*y^d)))),n+1,x),d+1,y)} /* Paul D. Hanna, Feb 18 2012 */
    for(n=0,10,for(d=0,n,print1(T(n,d),", "));print(""))
    
  • PARI
    {T(n,d)=polcoeff(polcoeff(sum(m=1,n+1,x*y/(1-x*y +x*y*O(x^n*y^d))^m*prod(j=1,m-1,(1-(1-x)^j))),n+1,x),d+1,y)} /* Paul D. Hanna, Feb 18 2012 */
    for(n=0,10,for(d=0,n,print1(T(n,d),", "));print(""))

Formula

The bivariate g.f. A(x,y) = Sum_{n>=1, d=1..n} T(n,d)*x^(n+1)*y^(d+1) can be given in two forms (see Remmel and Kitaev, or Levande link):
(1) A(x,y) = Sum_{n>=1} Product_{k=0..n-1} (1 - (1-x)^k*(1-x*y)),
(2) A(x,y) = Sum_{n>=1} x*y/(1-x*y)^n * Product_{k=1..n-1} (1 - (1-x)^k).

Extensions

Corrected offset, Joerg Arndt, Nov 03 2012

A218579 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with last zero at position k-1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 8, 10, 15, 53, 15, 26, 32, 38, 53, 217, 53, 99, 122, 142, 164, 217, 1014, 217, 433, 537, 619, 704, 797, 1014, 5335, 1014, 2143, 2683, 3069, 3464, 3876, 4321, 5335, 31240, 5335, 11854, 15015, 17063, 19140, 21294, 23522, 25905, 31240
Offset: 1

Views

Author

Joerg Arndt, Nov 03 2012

Keywords

Comments

Row sums are A022493.
First column and the diagonal is A022493(n-1).

Examples

			Triangle starts:
[ 1]      1;
[ 2]      1,    1;
[ 3]      2,    1,     2;
[ 4]      5,    2,     3,     5;
[ 5]     15,    5,     8,    10,    15;
[ 6]     53,   15,    26,    32,    38,    53;
[ 7]    217,   53,    99,   122,   142,   164,   217;
[ 8]   1014,  217,   433,   537,   619,   704,   797,  1014;
[ 9]   5335, 1014,  2143,  2683,  3069,  3464,  3876,  4321,  5335;
[10]  31240, 5335, 11854, 15015, 17063, 19140, 21294, 23522, 25905, 31240;
...
		

Crossrefs

Cf. A022493 (number of ascent sequences).
Cf. A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
Cf. A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k), A175579 (ascent sequences with k zeros).

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          add(b(n-1, j, t+`if`(j>i, 1, 0), max(-1, k-1)),
                 j=`if`(k>=0, 0, 1)..`if`(k=0, 0, t+1)))
        end:
    T:= (n, k)-> b(n-1, 0, 0, k-2):
    seq(seq(T(n,k), k=1..n), n=1..10);  # Alois P. Heinz, Nov 16 2012
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, Sum[b[n-1, j, t + If[j>i, 1, 0], Max[-1, k-1]], {j, If[k >= 0, 0, 1], If[k == 0, 0, t+1]}]]; T[n_, k_] := b[n-1, 0, 0, k-2]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)

A218580 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with first occurrence of the maximal value at position k-1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 1, 8, 13, 15, 16, 1, 16, 35, 47, 56, 62, 1, 32, 97, 153, 204, 248, 279, 1, 64, 275, 515, 770, 1030, 1257, 1423, 1, 128, 793, 1785, 3000, 4424, 5869, 7140, 8100, 1, 256, 2315, 6347, 12026, 19582, 28293, 37058, 44843, 50887
Offset: 1

Views

Author

Joerg Arndt, Nov 03 2012

Keywords

Comments

Row sums are A022493.
Second column are powers of 2.

Examples

			Triangle starts:
[ 1]  1,
[ 2]  1, 1,
[ 3]  1, 2, 2,
[ 4]  1, 4, 5, 5,
[ 5]  1, 8, 13, 15, 16,
[ 6]  1, 16, 35, 47, 56, 62,
[ 7]  1, 32, 97, 153, 204, 248, 279,
[ 8]  1, 64, 275, 515, 770, 1030, 1257, 1423,
[ 9]  1, 128, 793, 1785, 3000, 4424, 5869, 7140, 8100,
[10]  1, 256, 2315, 6347, 12026, 19582, 28293, 37058, 44843, 50887,
...
		

Crossrefs

Cf. A022493 (number of ascent sequences).
Cf. A218579 (ascent sequences with last zero at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
Cf. A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k), A175579 (ascent sequences with k zeros).

A218581 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with last occurrence of the maximal value at position k-1.

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 1, 4, 10, 0, 1, 6, 15, 31, 0, 1, 10, 29, 62, 115, 0, 1, 18, 63, 148, 288, 496, 0, 1, 34, 149, 392, 826, 1496, 2437, 0, 1, 66, 375, 1120, 2592, 5036, 8615, 13435, 0, 1, 130, 989, 3392, 8698, 18332, 33391, 54548, 82127
Offset: 1

Views

Author

Joerg Arndt, Nov 03 2012

Keywords

Comments

Row sums are A022493.

Examples

			Triangle starts:
[ 1]  1,
[ 2]  0, 2,
[ 3]  0, 1, 4,
[ 4]  0, 1, 4, 10,
[ 5]  0, 1, 6, 15, 31,
[ 6]  0, 1, 10, 29, 62, 115,
[ 7]  0, 1, 18, 63, 148, 288, 496,
[ 8]  0, 1, 34, 149, 392, 826, 1496, 2437,
[ 9]  0, 1, 66, 375, 1120, 2592, 5036, 8615, 13435,
[10]  0, 1, 130, 989, 3392, 8698, 18332, 33391, 54548, 82127,
[11]  0, 1, 258, 2703, 10768, 30768, 70868, 138635, 239688, 377001, 551384,
...
		

Crossrefs

Cf. A022493 (number of ascent sequences).
Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1).
Cf. A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k), A175579 (ascent sequences with k zeros).
Showing 1-6 of 6 results.