A022493
Fishburn numbers: number of linearized chord diagrams of degree n; also number of nonisomorphic interval orders on n unlabeled points.
Original entry on oeis.org
1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, 1422074, 10886503, 89903100, 796713190, 7541889195, 75955177642, 810925547354, 9148832109645, 108759758865725, 1358836180945243, 17801039909762186, 243992799075850037, 3492329741309417600, 52105418376516869150, 809029109658971635142
Offset: 0
Alexander Stoimenow (stoimeno(AT)math.toronto.edu)
From _Emanuele Munarini_, Oct 16 2012: (Start)
There are a(4)=15 ascent sequences (dots for zeros):
01: [ . . . . ]
02: [ . . . 1 ]
03: [ . . 1 . ]
04: [ . . 1 1 ]
05: [ . . 1 2 ]
06: [ . 1 . . ]
07: [ . 1 . 1 ]
08: [ . 1 . 2 ]
09: [ . 1 1 . ]
10: [ . 1 1 1 ]
11: [ . 1 1 2 ]
12: [ . 1 2 . ]
13: [ . 1 2 1 ]
14: [ . 1 2 2 ]
15: [ . 1 2 3 ]
(End)
From _Joerg Arndt_, May 10 2013: (Start)
There are a(4)=15 RGS of length 4 such that d(0)=0, 0 <= d(k) <= k, and d(j) != d(k)+1 for j < k (dots for zeros):
01: [ . . . . ]
02: [ . . . 1 ]
03: [ . . . 2 ]
04: [ . . . 3 ]
05: [ . . 1 1 ]
06: [ . . 1 2 ]
07: [ . . 1 3 ]
08: [ . . 2 . ]
09: [ . . 2 2 ]
10: [ . . 2 3 ]
11: [ . 1 1 1 ]
12: [ . 1 1 2 ]
13: [ . 1 1 3 ]
14: [ . 1 2 2 ]
15: [ . 1 2 3 ]
(End)
G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 53*x^5 + 217*x^6 + 1014*x^7 + 5335*x^8 + ...
- P. C. Fishburn, Interval Graphs and Interval Orders, Wiley, New York, 1985.
- Alois P. Heinz, Table of n, a(n) for n = 0..488
- Scott Ahlgren, Byungchan Kim and Jeremy Lovejoy, Dissections of strange q-series, arXiv:1812.02922 [math.NT], 2018.
- George E. Andrews and Vít Jelínek, On q-Series Identities Related to Interval Orders, European Journal of Combinatorics, Volume 39, July 2014, 178-187; arXiv preprint, arXiv:1309.6669 [math.CO], 2013.
- George E. Andrews and James A. Sellers, Congruences for the Fishburn Numbers, arXiv:1401.5345 [math.NT], 2014.
- Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
- Dror Bar-Natan and Sergei Duzhin, Bibliography of Vassiliev Invariants.
- Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, 2014.
- Colin Bijaoui, Hans U. Boden, Beckham Myers, Robert Osburn, William Rushworth, Aaron Tronsgard and Shaoyang Zhou, Generalized Fishburn numbers and torus knots, arXiv:2002.00635 [math.NT], 2020.
- Béla Bollobás and Oliver Riordan, Linearized chord diagrams and an upper bound for Vassiliev invariants, J. Knot Theory Ramifications, Vol. 9, No. 7 (2000), pp. 847-853.
- Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes and Sergey Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations. arXiv:0806.0666 [math.CO], 2008-2009. [Mark Dukes (dukes(AT)hi.is), May 12 2009]
- Graham Brightwell and Mitchel T. Keller, Asymptotic enumeration of labelled interval orders, arXiv:1111.6766 [math.CO], 2011.
- Kathrin Bringmann, Yingkun Li and Robert C. Rhoades, Asymptotics for the number of row-Fishburn matrices, European Journal of Combinatorics, Vol. 41 (October 2014), pp. 183-196; preprint.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- Giulio Cerbai, Modified ascent sequences and Bell numbers, arXiv:2305.10820 [math.CO], 2023. See p. 1.
- Giulio Cerbai and Anders Claesson, Fishburn trees, Univ. Iceland, 2023.
- Giulio Cerbai, Anders Claesson, and Bruce E. Sagan, Self-modified difference ascent sequences, arXiv:2408.06959 [math.CO], 2024.
- William Y. C. Chen, Alvin Y. L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics, Vol. 20, No. 1 (2013), #P76.
- Anders Claesson, Mark Dukes and Sergey Kitaev, A direct encoding of Stoimenow's matchings as ascent sequences, arXiv:0910.1619 [math.CO], 2009.
- Anders Claesson, Mark Dukes and Martina Kubitzke, Partition and composition matrices, arXiv:1006.1312 [math.CO], 2010-2011.
- Anders Claesson and Svante Linusson, n! matchings, n! posets, Proc. Amer. Math. Soc., Vol. 139 (2011), pp. 435-449.
- Dandan Chen, Sherry H. F. Yan and Robin D. P. Zhou, Equidistributed statistics on Fishburn matrices and permutations, arXiv:1808.04191 [math.CO], 2018.
- Julie Christophe, Jean-Paul Doignon and Samuel Fiorini, Counting Biorders, J. Integer Seq., Vol. 6 (2003), Article 03.4.3.
- CombOS - Combinatorial Object Server, Generate pattern-avoiding permutations.
- Matthieu Dien, Antoine Genitrini, and Frederic Peschanski, A Combinatorial Study of Async/Await Processes, Conf.: 19th Int'l Colloq. Theor. Aspects of Comp. (2022), (Analytic) Combinatorics of concurrent systems.
- Mark Dukes, Vít Jelínek and Martina Kubitzke, Composition Matrices, (2+2)-Free Posets and their Specializations, Electronic Journal of Combinatorics, Vol. 18, No. 1 (2011), Paper #P44.
- Mark Dukes, Sergey Kitaev, Jeffrey B. Remmel and Einar Steingrímsson, Enumerating (2+2)-free posets by indistinguishable elements, Journal of Combinatorics, Vol. 2, No. 1 (2011), pp. 139-163; arXiv preprint arXiv:1006.2696 [math.CO], 2010-2011.
- Niklas Eriksen and Jonas Sjöstrand, Equidistributed Statistics on Matchings and Permutations, Electronic Journal of Combinatorics, Vol. 21, No. 4 (2014), Article P4.43.
- Peter C. Fishburn, Intransitive indifference in preference theory: a survey, Operational Research, Vol. 18, No. 2 (1970), pp. 207-208.
- Peter C. Fishburn, Intransitive indifference with unequal indifference intervals, Journal of Mathematical Psychology, Vol. 7, No. 1 (1970), pp. 144-149.
- Shishuo Fu, Emma Yu Jin, Zhicong Lin, Sherry H. F. Yan and Robin D. P. Zhou, A new decomposition of ascent sequences and Euler-Stirling statistics, arXiv:1909.07277 [math.CO], 2019.
- Frank Garvan, Congruences and relations for r-Fishburn numbers, arXiv:1406.5611 [math.NT], (21-June-2014).
- Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018.
- Ankush Goswami, Abhash Kumar Jha, Byungchan Kim, and Robert Osburn, Asymptotics and sign patterns for coefficients in expansions of Habiro elements, arXiv:2204.02628 [math.NT], 2022.
- Stuart A. Hannah, Sieved Enumeration of Interval Orders and Other Fishburn Structures, arXiv:1502.05340 [math.CO], (18-February-2015).
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- P. E. Haxell, J. J. McDonald and S. K. Thomason, Counting interval orders, Order, Vol. 4 (1987), pp. 269-272.
- Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
- Kazuhiro Hikami and Jeremy Lovejoy, Torus knots and quantum modular forms, arXiv preprint arXiv:1409.6243 [math.NT], 2014.
- Soheir Mohamed Khamis, Exact Counting of Unlabeled Rigid Interval Posets Regarding or Disregarding Height, Order (journal), published on-line, Vol. 29 (2011), pp. 443-461.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Vol. 119, No. 3 (April 2012), pp. 599-614; arXiv preprint arXiv:1106.2261 [math.CO], 2011.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. Vol. 275, No. 1-3 (2004), pp. 165-175.
- Sergey Kitaev and Jeffrey Remmel, Enumerating (2+2)-free posets by the number of minimal elements and other statistics, Discrete Applied Mathematics, Vol. 159, No. 17 (2011), pp. 2098-2108.
- Paul Levande, Two New Interpretations of the Fishburn Numbers and their Refined Generating Functions, arXiv:1006.3013 [math.CO], 2010.
- Paul Levande, Fishburn diagrams, Fishburn numbers and their refined generating functions, Journal of Combinatorial Theory, Series A, Vol. 120, No. 1 (2013), pp. 194-217. - From _N. J. A. Sloane_, Dec 23 2012
- Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation, Vol. 364 (2020), 124672.
- Robert Parviainen, Wilf classification of bi-vincular permutation patterns, arXiv:0910.5103 [math.CO], 2009.
- Lara K. Pudwell, Ascent sequences and the binomial convolution of Catalan numbers, arXiv:1408.6823 [math.CO], (28-August-2014).
- Lara Pudwell, Pattern-avoiding ascent sequences, Slides from a talk, 2015.
- James A. Reeds and Peter C. Fishburn, Counting split interval orders, Order, Vol. 18, No. 2 (2001), pp. 129-135.
- A. Stoimenow, Enumeration of chord diagrams and an upper bound for Vassiliev invariants, J. Knot Theory Ramifications, Vol. 7, No. 1 (1998), pp. 93-114; alternative link.
- Armin Straub, Congruences for Fishburn numbers modulo prime powers, arXiv:1407.7521 [math.NT], (28-July-2014).
- Sherry H. F. Yan, On a conjecture about enumerating (2 + 2)-free posets, arXiv:1006.1226 [math.CO], 2010.
- Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology, Vol. 40, No. 5 (2001), pp. 945-960.
- Yan X. Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015. See p. 11.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See p. 2.
Cf.
A137251 (ascent sequences with k ascents),
A218577 (ascent sequences with maximal element k),
A175579 (ascent sequences with k zeros).
Cf.
A218579 (ascent sequences with last zero at position k-1),
A218580 (ascent sequences with first occurrence of the maximal value at position k-1),
A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
-
b:= proc(n, i, t) option remember; `if`(n<1, 1,
add(b(n-1, j, t+`if`(j>i,1,0)), j=0..t+1))
end:
a:= n-> b(n-1, 0, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2012
-
max = 22; f[x_] := Sum[ Product[ 1-(1-x)^j, {j, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Sum[b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}] ]; a[n_] := b[n-1, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 09 2015, after Alois P. Heinz *)
-
F(x,n) := remainder(sum(product(1-(1-x)^i,i,1,k),k,0,n),x^(n+1));
makelist(coeff(F(x,n),x^n),n,0,20); /* Emanuele Munarini, Oct 16 2012 */
-
{a(n) = polcoeff( sum(i=0, n, prod(j=1, i, 1 - (1-x)^j, 1 + x * O(x^n))), n)}; /* Michael Somos, Jul 21 2006 */
-
# Program adapted from Alois P. Heinz's Maple code.
# b(n,i,t) gives the number of length-n postfixes of ascent sequences
# with a prefix having t ascents and last element i.
@CachedFunction
def b(n, i, t):
if n <= 1: return 1
return sum(b(n - 1, j, t + (j > i)) for j in range(t + 2))
def a(n): return b(n, 0, 0)
[a(n) for n in range(66)]
# Joerg Arndt, May 11 2013
A242153
Number T(n,k) of ascent sequences of length n with exactly k flat steps; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 16, 20, 12, 4, 1, 0, 61, 80, 50, 20, 5, 1, 0, 271, 366, 240, 100, 30, 6, 1, 0, 1372, 1897, 1281, 560, 175, 42, 7, 1, 0, 7795, 10976, 7588, 3416, 1120, 280, 56, 8, 1, 0, 49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0
Offset: 0
Triangle T(n,k) begins:
00: 1;
01: 1, 0;
02: 1, 1, 0;
03: 2, 2, 1, 0;
04: 5, 6, 3, 1, 0;
05: 16, 20, 12, 4, 1, 0;
06: 61, 80, 50, 20, 5, 1, 0;
07: 271, 366, 240, 100, 30, 6, 1, 0;
08: 1372, 1897, 1281, 560, 175, 42, 7, 1, 0;
09: 7795, 10976, 7588, 3416, 1120, 280, 56, 8, 1, 0;
10: 49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0;
...
The 15 ascent sequences of length 4 (dots denote zeros) with their number of flat steps are:
01: [ . . . . ] 3
02: [ . . . 1 ] 2
03: [ . . 1 . ] 1
04: [ . . 1 1 ] 2
05: [ . . 1 2 ] 1
06: [ . 1 . . ] 1
07: [ . 1 . 1 ] 0
08: [ . 1 . 2 ] 0
09: [ . 1 1 . ] 1
10: [ . 1 1 1 ] 2
11: [ . 1 1 2 ] 1
12: [ . 1 2 . ] 0
13: [ . 1 2 1 ] 0
14: [ . 1 2 2 ] 1
15: [ . 1 2 3 ] 0
There are 5 sequences without flat steps, 6 with one flat step, etc., giving row [5, 6, 3, 1, 0] for n=4.
Columns k=0-10 give:
A138265,
A242154,
A242155,
A242156,
A242157,
A242158,
A242159,
A242160,
A242161,
A242162,
A242163.
-
b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
`if`(j=i, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
seq(T(n), n=0..12);
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == i, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][ b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
A238858
Triangle T(n,k) read by rows: T(n,k) is the number of length-n ascent sequences with exactly k descents.
Original entry on oeis.org
1, 1, 0, 2, 0, 0, 4, 1, 0, 0, 8, 7, 0, 0, 0, 16, 33, 4, 0, 0, 0, 32, 131, 53, 1, 0, 0, 0, 64, 473, 429, 48, 0, 0, 0, 0, 128, 1611, 2748, 822, 26, 0, 0, 0, 0, 256, 5281, 15342, 9305, 1048, 8, 0, 0, 0, 0, 512, 16867, 78339, 83590, 21362, 937, 1, 0, 0, 0, 0, 1024, 52905, 376159, 647891, 307660, 35841, 594, 0, 0, 0, 0, 0
Offset: 0
Triangle starts:
00: 1;
01: 1, 0;
02: 2, 0, 0;
03: 4, 1, 0, 0;
04: 8, 7, 0, 0, 0;
05: 16, 33, 4, 0, 0, 0;
06: 32, 131, 53, 1, 0, 0, 0;
07: 64, 473, 429, 48, 0, 0, 0, 0;
08: 128, 1611, 2748, 822, 26, 0, 0, 0, 0;
09: 256, 5281, 15342, 9305, 1048, 8, 0, 0, 0, 0;
10: 512, 16867, 78339, 83590, 21362, 937, 1, 0, 0, 0, 0;
11: 1024, 52905, 376159, 647891, 307660, 35841, 594, 0, 0, 0, 0, 0;
12: 2048, 163835, 1728458, 4537169, 3574869, 834115, 45747, 262, 0, 0, 0, 0, 0;
...
The 53 ascent sequences of length 5 together with their numbers of descents are (dots for zeros):
01: [ . . . . . ] 0 28: [ . 1 1 . 1 ] 1
02: [ . . . . 1 ] 0 29: [ . 1 1 . 2 ] 1
03: [ . . . 1 . ] 1 30: [ . 1 1 1 . ] 1
04: [ . . . 1 1 ] 0 31: [ . 1 1 1 1 ] 0
05: [ . . . 1 2 ] 0 32: [ . 1 1 1 2 ] 0
06: [ . . 1 . . ] 1 33: [ . 1 1 2 . ] 1
07: [ . . 1 . 1 ] 1 34: [ . 1 1 2 1 ] 1
08: [ . . 1 . 2 ] 1 35: [ . 1 1 2 2 ] 0
09: [ . . 1 1 . ] 1 36: [ . 1 1 2 3 ] 0
10: [ . . 1 1 1 ] 0 37: [ . 1 2 . . ] 1
11: [ . . 1 1 2 ] 0 38: [ . 1 2 . 1 ] 1
12: [ . . 1 2 . ] 1 39: [ . 1 2 . 2 ] 1
13: [ . . 1 2 1 ] 1 40: [ . 1 2 . 3 ] 1
14: [ . . 1 2 2 ] 0 41: [ . 1 2 1 . ] 2
15: [ . . 1 2 3 ] 0 42: [ . 1 2 1 1 ] 1
16: [ . 1 . . . ] 1 43: [ . 1 2 1 2 ] 1
17: [ . 1 . . 1 ] 1 44: [ . 1 2 1 3 ] 1
18: [ . 1 . . 2 ] 1 45: [ . 1 2 2 . ] 1
19: [ . 1 . 1 . ] 2 46: [ . 1 2 2 1 ] 1
20: [ . 1 . 1 1 ] 1 47: [ . 1 2 2 2 ] 0
21: [ . 1 . 1 2 ] 1 48: [ . 1 2 2 3 ] 0
22: [ . 1 . 1 3 ] 1 49: [ . 1 2 3 . ] 1
23: [ . 1 . 2 . ] 2 50: [ . 1 2 3 1 ] 1
24: [ . 1 . 2 1 ] 2 51: [ . 1 2 3 2 ] 1
25: [ . 1 . 2 2 ] 1 52: [ . 1 2 3 3 ] 0
26: [ . 1 . 2 3 ] 1 53: [ . 1 2 3 4 ] 0
27: [ . 1 1 . . ] 1
There are 16 ascent sequences with no descent, 33 with one, and 4 with 2, giving row 4 [16, 33, 4, 0, 0, 0].
Cf.
A137251 (ascent sequences with k ascents),
A242153 (ascent sequences with k flat steps).
-
# b(n, i, t): polynomial in x where the coefficient of x^k is #
# the number of postfixes of these sequences of #
# length n having k descents such that the prefix #
# has rightmost element i and exactly t ascents #
b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
`if`(ji, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
seq(T(n), n=0..12);
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[If[ji, 1, 0]], {j, 0, t+1}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
-
# Transcription of the Maple program
R. = QQ[]
@CachedFunction
def b(n,i,t):
if n==0: return 1
return sum( ( x if ji) ) for j in range(t+2) )
def T(n): return b(n, -1, -1)
for n in range(0,10): print(T(n).list())
A242352
Number T(n,k) of isoscent sequences of length n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=n+2-ceiling(2*sqrt(n+1)), read by rows.
Original entry on oeis.org
1, 1, 2, 4, 1, 9, 6, 21, 29, 2, 51, 124, 28, 127, 499, 241, 10, 323, 1933, 1667, 216, 1, 835, 7307, 10142, 2765, 98, 2188, 27166, 56748, 27214, 2637, 22, 5798, 99841, 299485, 227847, 44051, 1546, 2, 15511, 363980, 1514445, 1708700, 563444, 46947, 570
Offset: 0
T(4,0) = 9: [0,0,0,0], [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,1], [0,0,1,2], [0,0,2,2], [0,1,1,1], [0,1,1,2].
T(4,1) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
T(5,2) = 2: [0,0,2,1,0], [0,1,0,1,0].
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 4, 1;
: 9, 6;
: 21, 29, 2;
: 51, 124, 28;
: 127, 499, 241, 10;
: 323, 1933, 1667, 216, 1;
: 835, 7307, 10142, 2765, 98;
: 2188, 27166, 56748, 27214, 2637, 22;
Cf.
A048993 (for counting level steps),
A242351 (for counting ascents),
A137251 (ascent sequences counting ascents),
A238858 (ascent sequences counting descents),
A242153 (ascent sequences counting level steps),
A083479.
-
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
seq(T(n), n=0..15);
-
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[jJean-François Alcover, Feb 09 2015, after Maple *)
A242351
Number T(n,k) of isoscent sequences of length n with exactly k ascents; triangle T(n,k), n>=0, 0<=k<=n+3-ceiling(2*sqrt(n+2)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 11, 3, 1, 26, 25, 1, 57, 128, 17, 1, 120, 525, 229, 2, 1, 247, 1901, 1819, 172, 1, 502, 6371, 11172, 3048, 53, 1, 1013, 20291, 58847, 33065, 2751, 7, 1, 2036, 62407, 280158, 275641, 56905, 1422, 1, 4083, 187272, 1242859, 1945529, 771451, 61966, 436
Offset: 0
T(4,0) = 1: [0,0,0,0].
T(4,1) = 11: [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,0], [0,0,1,1], [0,0,2,0], [0,0,2,1], [0,0,2,2], [0,1,0,0], [0,1,1,0], [0,1,1,1].
T(4,2) = 3: [0,0,1,2], [0,1,0,1], [0,1,1,2].
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4;
1, 11, 3;
1, 26, 25;
1, 57, 128, 17;
1, 120, 525, 229, 2;
1, 247, 1901, 1819, 172;
1, 502, 6371, 11172, 3048, 53;
1, 1013, 20291, 58847, 33065, 2751, 7;
...
Cf.
A048993 (for counting level steps),
A242352 (for counting descents),
A137251 (ascent sequences counting ascents),
A238858 (ascent sequences counting descents),
A242153 (ascent sequences counting level steps),
A083479.
-
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
seq(T(n), n=0..15);
-
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j>i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 09 2015, after Maple *)
A175579
Triangle T(n,d) read by rows: Number of ascent sequences of length n with d zeros.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 21, 12, 4, 1, 53, 84, 54, 20, 5, 1, 217, 380, 270, 110, 30, 6, 1, 1014, 1926, 1490, 660, 195, 42, 7, 1, 5335, 10840, 9020, 4300, 1365, 315, 56, 8, 1, 31240, 67195, 59550, 30290, 10255, 2520, 476, 72, 9, 1, 201608, 455379, 426405
Offset: 1
The triangle starts:
01: 1;
02: 1, 1;
03: 2, 2, 1;
04: 5, 6, 3, 1;
05: 15, 21, 12, 4, 1;
06: 53, 84, 54, 20, 5, 1;
07: 217, 380, 270, 110, 30, 6, 1;
08: 1014, 1926, 1490, 660, 195, 42, 7, 1;
09: 5335, 10840, 9020, 4300, 1365, 315, 56, 8, 1;
10: 31240, 67195, 59550, 30290, 10255, 2520, 476, 72, 9, 1;
11: 201608, 455379, 426405, 229740, 82425, 21448, 4284, 684, 90, 10, 1;
...
From _Joerg Arndt_, Mar 05 2014: (Start)
The 15 ascent sequences of length 4 (dots for zeros) together with their numbers of zeros and numbers of fixed points are:
01: [ . . . . ] 4 1
02: [ . . . 1 ] 3 1
03: [ . . 1 . ] 3 1
04: [ . . 1 1 ] 2 1
05: [ . . 1 2 ] 2 1
06: [ . 1 . . ] 3 2
07: [ . 1 . 1 ] 2 2
08: [ . 1 . 2 ] 2 2
09: [ . 1 1 . ] 2 2
10: [ . 1 1 1 ] 1 2
11: [ . 1 1 2 ] 1 2
12: [ . 1 2 . ] 2 3
13: [ . 1 2 1 ] 1 3
14: [ . 1 2 2 ] 1 3
15: [ . 1 2 3 ] 1 4
Both statistics give row 4: [5, 6, 3, 1].
(End)
- Joerg Arndt and Alois P. Heinz, Rows n = 1..141, flattened
- Hsien-Kuei Hwang, and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
- V. Jelinek, Catalan pairs and Fishburn triples, Adv. Appl. Math. 70 (2015) 1-31
- S. Kitaev, J. Remmel, Enumerating (2+2)-free posets by the number of minimal elements and other statistics, Discrete Applied Mathematics 159 (17) (2011), 2098-2108 (preprint: arXiv:1004.3220 [math.CO]).
- Paul Levande, Two new interpretations of the Fishburn numbers and their refined generating functions, arXiv:1006.3013
- Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology, vol.40, pp.945-960 (2001); see p.948.
Cf.
A022493 (number of ascent sequences),
A137251 (ascent sequences with k ascents),
A218577 (ascent sequences with maximal element k).
Cf.
A218579 (ascent sequences with last zero at position k-1),
A218580 (ascent sequences with first occurrence of the maximal value at position k-1),
A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
-
b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
`if`(j=0, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, -1$2)):
seq(T(n), n=1..12); # Alois P. Heinz, Mar 11 2014
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == 0, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, -1, -1]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
-
{T(n,d)=polcoeff(polcoeff(sum(m=0,n+1,prod(j=0,m-1,(1-(1-x)^j*(1-x*y) +x^2*y^2*O(x^n*y^d)))),n+1,x),d+1,y)} /* Paul D. Hanna, Feb 18 2012 */
for(n=0,10,for(d=0,n,print1(T(n,d),", "));print(""))
-
{T(n,d)=polcoeff(polcoeff(sum(m=1,n+1,x*y/(1-x*y +x*y*O(x^n*y^d))^m*prod(j=1,m-1,(1-(1-x)^j))),n+1,x),d+1,y)} /* Paul D. Hanna, Feb 18 2012 */
for(n=0,10,for(d=0,n,print1(T(n,d),", "));print(""))
A218577
Triangle read by rows: T(n,k) is the number of ascent sequences of length n with maximal element k-1.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 11, 1, 1, 31, 90, 74, 20, 1, 1, 63, 301, 402, 209, 37, 1, 1, 127, 966, 1951, 1629, 590, 70, 1, 1, 255, 3025, 8869, 10839, 6430, 1685, 135, 1, 1, 511, 9330, 38720, 65720, 56878, 25313, 4870, 264, 1
Offset: 1
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 7, 6, 1;
1, 15, 25, 11, 1;
1, 31, 90, 74, 20, 1;
1, 63, 301, 402, 209, 37, 1;
1, 127, 966, 1951, 1629, 590, 70, 1;
1, 255, 3025, 8869, 10839, 6430, 1685, 135, 1;
1, 511, 9330, 38720, 65720, 56878, 25313, 4870, 264, 1;
1, 1023, 28501, 164676, 376114, 444337, 292695, 99996, 14209, 521, 1;
...
The 53 ascent sequences of length 5 are (dots for zeros):
[ #] ascent-seq. #max digit
[ 1] [ . . . . . ] 0
[ 2] [ . . . . 1 ] 1
[ 3] [ . . . 1 . ] 1
[ 4] [ . . . 1 1 ] 1
[ 5] [ . . . 1 2 ] 2
[ 6] [ . . 1 . . ] 1
[ 7] [ . . 1 . 1 ] 1
[ 8] [ . . 1 . 2 ] 2
[ 9] [ . . 1 1 . ] 1
[10] [ . . 1 1 1 ] 1
[11] [ . . 1 1 2 ] 2
[12] [ . . 1 2 . ] 2
[13] [ . . 1 2 1 ] 2
[14] [ . . 1 2 2 ] 2
[15] [ . . 1 2 3 ] 3
[16] [ . 1 . . . ] 1
[17] [ . 1 . . 1 ] 1
[18] [ . 1 . . 2 ] 2
[19] [ . 1 . 1 . ] 1
[20] [ . 1 . 1 1 ] 1
[21] [ . 1 . 1 2 ] 2
[22] [ . 1 . 1 3 ] 3
[23] [ . 1 . 2 . ] 2
[24] [ . 1 . 2 1 ] 2
[25] [ . 1 . 2 2 ] 2
[26] [ . 1 . 2 3 ] 3
[27] [ . 1 1 . . ] 1
[28] [ . 1 1 . 1 ] 1
[29] [ . 1 1 . 2 ] 2
[...]
[49] [ . 1 2 3 . ] 3
[50] [ . 1 2 3 1 ] 3
[51] [ . 1 2 3 2 ] 3
[52] [ . 1 2 3 3 ] 3
[53] [ . 1 2 3 4 ] 4
There is 1 sequence with maximum zero, 15 with maximum one, etc.,
therefore the fifth row is 1, 15, 25, 11, 1.
- Joerg Arndt and Alois P. Heinz, Rows n = 1..141, flattened (first 15 rows from Joerg Arndt)
- Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, Sergey Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations, arXiv:0806.0666 [math.CO], 2008-2009.
- William Y. C. Chen, Alvin Y.L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics Volume 20, Issue 1 (2013), #P76.
Cf.
A022493 (number of ascent sequences),
A137251 (ascent sequences with k ascents),
A175579 (ascent sequences with k zeros).
Cf.
A218579 (ascent sequences with last zero at position k-1),
A218580 (ascent sequences with first occurrence of the maximal value at position k-1),
A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
A218579
Triangle read by rows: T(n,k) is the number of ascent sequences of length n with last zero at position k-1.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 8, 10, 15, 53, 15, 26, 32, 38, 53, 217, 53, 99, 122, 142, 164, 217, 1014, 217, 433, 537, 619, 704, 797, 1014, 5335, 1014, 2143, 2683, 3069, 3464, 3876, 4321, 5335, 31240, 5335, 11854, 15015, 17063, 19140, 21294, 23522, 25905, 31240
Offset: 1
Triangle starts:
[ 1] 1;
[ 2] 1, 1;
[ 3] 2, 1, 2;
[ 4] 5, 2, 3, 5;
[ 5] 15, 5, 8, 10, 15;
[ 6] 53, 15, 26, 32, 38, 53;
[ 7] 217, 53, 99, 122, 142, 164, 217;
[ 8] 1014, 217, 433, 537, 619, 704, 797, 1014;
[ 9] 5335, 1014, 2143, 2683, 3069, 3464, 3876, 4321, 5335;
[10] 31240, 5335, 11854, 15015, 17063, 19140, 21294, 23522, 25905, 31240;
...
Cf.
A022493 (number of ascent sequences).
Cf.
A218580 (ascent sequences with first occurrence of the maximal value at position k-1),
A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
Cf.
A137251 (ascent sequences with k ascents),
A218577 (ascent sequences with maximal element k),
A175579 (ascent sequences with k zeros).
-
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
add(b(n-1, j, t+`if`(j>i, 1, 0), max(-1, k-1)),
j=`if`(k>=0, 0, 1)..`if`(k=0, 0, t+1)))
end:
T:= (n, k)-> b(n-1, 0, 0, k-2):
seq(seq(T(n,k), k=1..n), n=1..10); # Alois P. Heinz, Nov 16 2012
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, Sum[b[n-1, j, t + If[j>i, 1, 0], Max[-1, k-1]], {j, If[k >= 0, 0, 1], If[k == 0, 0, t+1]}]]; T[n_, k_] := b[n-1, 0, 0, k-2]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
A218580
Triangle read by rows: T(n,k) is the number of ascent sequences of length n with first occurrence of the maximal value at position k-1.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 1, 8, 13, 15, 16, 1, 16, 35, 47, 56, 62, 1, 32, 97, 153, 204, 248, 279, 1, 64, 275, 515, 770, 1030, 1257, 1423, 1, 128, 793, 1785, 3000, 4424, 5869, 7140, 8100, 1, 256, 2315, 6347, 12026, 19582, 28293, 37058, 44843, 50887
Offset: 1
Triangle starts:
[ 1] 1,
[ 2] 1, 1,
[ 3] 1, 2, 2,
[ 4] 1, 4, 5, 5,
[ 5] 1, 8, 13, 15, 16,
[ 6] 1, 16, 35, 47, 56, 62,
[ 7] 1, 32, 97, 153, 204, 248, 279,
[ 8] 1, 64, 275, 515, 770, 1030, 1257, 1423,
[ 9] 1, 128, 793, 1785, 3000, 4424, 5869, 7140, 8100,
[10] 1, 256, 2315, 6347, 12026, 19582, 28293, 37058, 44843, 50887,
...
Cf.
A022493 (number of ascent sequences).
Cf.
A218579 (ascent sequences with last zero at position k-1),
A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
Cf.
A137251 (ascent sequences with k ascents),
A218577 (ascent sequences with maximal element k),
A175579 (ascent sequences with k zeros).
A218581
Triangle read by rows: T(n,k) is the number of ascent sequences of length n with last occurrence of the maximal value at position k-1.
Original entry on oeis.org
1, 0, 2, 0, 1, 4, 0, 1, 4, 10, 0, 1, 6, 15, 31, 0, 1, 10, 29, 62, 115, 0, 1, 18, 63, 148, 288, 496, 0, 1, 34, 149, 392, 826, 1496, 2437, 0, 1, 66, 375, 1120, 2592, 5036, 8615, 13435, 0, 1, 130, 989, 3392, 8698, 18332, 33391, 54548, 82127
Offset: 1
Triangle starts:
[ 1] 1,
[ 2] 0, 2,
[ 3] 0, 1, 4,
[ 4] 0, 1, 4, 10,
[ 5] 0, 1, 6, 15, 31,
[ 6] 0, 1, 10, 29, 62, 115,
[ 7] 0, 1, 18, 63, 148, 288, 496,
[ 8] 0, 1, 34, 149, 392, 826, 1496, 2437,
[ 9] 0, 1, 66, 375, 1120, 2592, 5036, 8615, 13435,
[10] 0, 1, 130, 989, 3392, 8698, 18332, 33391, 54548, 82127,
[11] 0, 1, 258, 2703, 10768, 30768, 70868, 138635, 239688, 377001, 551384,
...
Cf.
A022493 (number of ascent sequences).
Cf.
A218579 (ascent sequences with last zero at position k-1),
A218580 (ascent sequences with first occurrence of the maximal value at position k-1).
Cf.
A137251 (ascent sequences with k ascents),
A218577 (ascent sequences with maximal element k),
A175579 (ascent sequences with k zeros).
Showing 1-10 of 13 results.
Comments