cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A242352 Number T(n,k) of isoscent sequences of length n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=n+2-ceiling(2*sqrt(n+1)), read by rows.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 6, 21, 29, 2, 51, 124, 28, 127, 499, 241, 10, 323, 1933, 1667, 216, 1, 835, 7307, 10142, 2765, 98, 2188, 27166, 56748, 27214, 2637, 22, 5798, 99841, 299485, 227847, 44051, 1546, 2, 15511, 363980, 1514445, 1708700, 563444, 46947, 570
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, May 11 2014

Keywords

Comments

An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)].
Row sums give A000110.
Last elements of rows give A243484.

Examples

			T(4,0) = 9: [0,0,0,0], [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,1], [0,0,1,2], [0,0,2,2], [0,1,1,1], [0,1,1,2].
T(4,1) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
T(5,2) = 2: [0,0,2,1,0], [0,1,0,1,0].
Triangle T(n,k) begins:
:    1;
:    1;
:    2;
:    4,     1;
:    9,     6;
:   21,    29,     2;
:   51,   124,    28;
:  127,   499,   241,    10;
:  323,  1933,  1667,   216,    1;
:  835,  7307, 10142,  2765,   98;
: 2188, 27166, 56748, 27214, 2637, 22;
		

Crossrefs

Cf. A048993 (for counting level steps), A242351 (for counting ascents), A137251 (ascent sequences counting ascents), A238858 (ascent sequences counting descents), A242153 (ascent sequences counting level steps), A083479.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[jJean-François Alcover, Feb 09 2015, after Maple *)

A243228 Number of isoscent sequences of length n with exactly two ascents.

Original entry on oeis.org

3, 25, 128, 525, 1901, 6371, 20291, 62407, 187272, 552104, 1606762, 4631643, 13256644, 37742047, 107025452, 302585780, 853556449, 2403702976, 6760469822, 18995826302, 53336990264, 149680752886, 419883986837, 1177504825907, 3301408010791, 9254726751126
Offset: 4

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=2 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 2):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j > i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient [b[n - 1, 0, 0], x, 2]; Table[a[n], {n, 4, 35}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

Recurrence: (3*n^3 - 43*n^2 + 120*n + 20)*a(n) = (21*n^3 - 289*n^2 + 712*n + 400)*a(n-1) - (51*n^3 - 665*n^2 + 1374*n + 1540)*a(n-2) + 4*(12*n^3 - 145*n^2 + 230*n + 435)*a(n-3) - (9*n^3 - 87*n^2 + 26*n + 280)*a(n-4) - 2*(3*n^3 - 34*n^2 + 43*n + 100)*a(n-5). - Vaclav Kotesovec, Aug 27 2014
a(n) ~ c * d^n, where d = 2.8019377358048382524722... is the root of the equation 1 + 3*d - 4*d^2 + d^3 = 0, c = 0.9786935821895919379992... is the root of the equation 1 - 49*c^2 + 49*c^3 = 0. - Vaclav Kotesovec, Aug 27 2014
G.f.: x^4*(3 - 5*x + x^2)*(1 - x - x^2) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x + 3*x^2 + x^3)) (conjectured). - Colin Barker, May 05 2019

A243229 Number of isoscent sequences of length n with exactly three ascents.

Original entry on oeis.org

17, 229, 1819, 11172, 58847, 280158, 1242859, 5238042, 21245548, 83685745, 322225735, 1218705577, 4544214608, 16751906196, 61188410692, 221832968059, 799344529621, 2865983103387, 10233713828145, 36419029944617, 129245774064864, 457623216922119
Offset: 6

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=3 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 3):
    seq(a(n), n=6..35);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[
        If[j>i, x, 1] *b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]];
    a[n_] := Coefficient[b[n - 1, 0, 0], x, 3];
    Table[a[n], {n, 6, 35}] (* Jean-François Alcover, Aug 27 2021, after Maple code *)

Formula

G.f.: x^6*(17 - 213*x + 1118*x^2 - 3135*x^3 + 4851*x^4 - 3492*x^5 - 262*x^6 + 1707*x^7 + 82*x^8 - 1050*x^9 + 189*x^10 + 297*x^11 - 122*x^12 + 11*x^13 + 3*x^14) / ((1 - x)^4*(1 - 2*x)^3*(1 - 4*x + 3*x^2 + x^3)^2*(1 - 8*x + 21*x^2 - 18*x^3 - 3*x^4 + 5*x^5 + 3*x^6)) (conjectured). - Colin Barker, May 04 2019

A243230 Number of isoscent sequences of length n with exactly four ascents.

Original entry on oeis.org

2, 172, 3048, 33065, 275641, 1945529, 12246616, 70948683, 386155045, 2002805428, 10000176270, 48434098918, 228855387073, 1059660102823, 4824874714701, 21663637862920, 96134931734425, 422409581103433, 1840542075175555, 7962723214375505, 34240149114971395
Offset: 7

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=4 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 4):
    seq(a(n), n=7..35);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[
       If[j > i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]];
    a[n_] := Coefficient[b[n - 1, 0, 0], x, 4];
    Table[a[n], {n, 7, 35}] (* Jean-François Alcover, Aug 27 2021, after Maple code *)

Formula

G.f.: x^7*(2 + 58*x - 3648*x^2 + 72673*x^3 - 842380*x^4 + 6646402*x^5 - 38326607*x^6 + 167767231*x^7 - 568689800*x^8 + 1503499267*x^9 - 3082877524*x^10 + 4785455208*x^11 - 5266898088*x^12 + 3276181912*x^13 + 633509453*x^14 - 3771906622*x^15 + 3792580950*x^16 - 1396200816*x^17 - 686750857*x^18 + 1195721330*x^19 - 1109678200*x^20 + 1163509247*x^21 - 851661184*x^22 + 47666957*x^23 + 460007148*x^24 - 312042368*x^25 - 2183667*x^26 + 84057866*x^27 - 24458487*x^28 - 9560501*x^29 + 5700026*x^30 + 307683*x^31 - 694453*x^32 + 45182*x^33 + 51672*x^34 - 3534*x^35 - 1395*x^36 - 135*x^37) / ((1 - x)^5*(1 - 2*x)^4*(1 - 4*x + 3*x^2 + x^3)^3*(1 - 8*x + 21*x^2 - 18*x^3 - 3*x^4 + 5*x^5 + 3*x^6)^2*(1 - 16*x + 105*x^2 - 361*x^3 + 676*x^4 - 606*x^5 + 68*x^6 + 192*x^7 + 83*x^8 - 157*x^9 - 44*x^10 + 45*x^11 + 15*x^12)) (conjectured). - Colin Barker, May 05 2019

A243231 Number of isoscent sequences of length n with exactly five ascents.

Original entry on oeis.org

53, 2751, 56905, 771451, 8134377, 72508373, 573143602, 4140884203, 27910175578, 178061795837, 1086790574778, 6397136152382, 36542124316824, 203563522508400, 1110216333288652, 5946996009211010, 31369110229193995, 163289639236069520, 840329677373681576
Offset: 9

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=5 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 5):
    seq(a(n), n=9..35);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[
        If[j > i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]];
    a[n_] := Coefficient[b[n - 1, 0, 0], x, 5];
    Table[a[n], {n, 9, 35}] (* Jean-François Alcover, Aug 27 2021, after Maple code *)

A243232 Number of isoscent sequences of length n with exactly six ascents.

Original entry on oeis.org

7, 1422, 61966, 1419901, 22720053, 288205741, 3105573804, 29654436325, 258037473373, 2086374808221, 15899245803550, 115413232143719, 804608004076949, 5421939004211551, 35497436998569721, 226735499246904329, 1417770877081098164, 8703370306993200829
Offset: 10

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=6 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 6):
    seq(a(n), n=10..35);

A243233 Number of isoscent sequences of length n with exactly seven ascents.

Original entry on oeis.org

436, 45146, 1830826, 45369299, 826196076, 12168531813, 153430719591, 1718168937922, 17525279293159, 165802561604726, 1474718822704304, 12459599973722036, 100805357136035992, 786035745070774366, 5938016635175121413, 43645066989439738813, 313228673357655892678
Offset: 12

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=7 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 7):
    seq(a(n), n=12..35);

A243234 Number of isoscent sequences of length n with exactly eight ascents.

Original entry on oeis.org

72, 22702, 1726823, 67907889, 1795511707, 36321261053, 605440292330, 8715982350668, 111865311047525, 1309224069548063, 14207107757575607, 144766250416253170, 1398869193142980670, 12919066626921248461, 114754676548076467734, 985458803547385212585
Offset: 13

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=8 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 8):
    seq(a(n), n=13..35);

A243235 Number of isoscent sequences of length n with exactly nine ascents.

Original entry on oeis.org

5, 7894, 1224994, 78795771, 3067107659, 85773445272, 1895106633310, 35082703708444, 565885383903338, 8174846220800924, 107914203931103343, 1321652161255079196, 15194953405886326264, 165524034548480907270, 1721272958146506221402, 17191653626679380069342
Offset: 14

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=9 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 9):
    seq(a(n), n=14..35);

A243236 Number of isoscent sequences of length n with exactly ten ascents.

Original entry on oeis.org

1854, 663390, 72572427, 4229760773, 164869021176, 4846616066912, 115525788526251, 2341346575945183, 41696673590069251, 668272802442309946, 9812868808904564866, 133849038379000364897, 1714455118957116764366, 20802230173239523620513, 240794713489411990019752
Offset: 16

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 01 2014

Keywords

Crossrefs

Column k=10 of A242351.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    a:= n-> coeff(b(n-1, 0$2), x, 10):
    seq(a(n), n=16..35);
Showing 1-10 of 11 results. Next