cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A242351 Number T(n,k) of isoscent sequences of length n with exactly k ascents; triangle T(n,k), n>=0, 0<=k<=n+3-ceiling(2*sqrt(n+2)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 11, 3, 1, 26, 25, 1, 57, 128, 17, 1, 120, 525, 229, 2, 1, 247, 1901, 1819, 172, 1, 502, 6371, 11172, 3048, 53, 1, 1013, 20291, 58847, 33065, 2751, 7, 1, 2036, 62407, 280158, 275641, 56905, 1422, 1, 4083, 187272, 1242859, 1945529, 771451, 61966, 436
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, May 11 2014

Keywords

Comments

An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)].
Row sums give A000110.
Last elements of rows give A243237.

Examples

			T(4,0) = 1: [0,0,0,0].
T(4,1) = 11: [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,0], [0,0,1,1], [0,0,2,0], [0,0,2,1], [0,0,2,2], [0,1,0,0], [0,1,1,0], [0,1,1,1].
T(4,2) = 3: [0,0,1,2], [0,1,0,1], [0,1,1,2].
Triangle T(n,k) begins:
  1;
  1;
  1,    1;
  1,    4;
  1,   11,     3;
  1,   26,    25;
  1,   57,   128,    17;
  1,  120,   525,   229,     2;
  1,  247,  1901,  1819,   172;
  1,  502,  6371, 11172,  3048,   53;
  1, 1013, 20291, 58847, 33065, 2751, 7;
  ...
		

Crossrefs

Cf. A048993 (for counting level steps), A242352 (for counting descents), A137251 (ascent sequences counting ascents), A238858 (ascent sequences counting descents), A242153 (ascent sequences counting level steps), A083479.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j>i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 09 2015, after Maple *)

A243474 Number of isoscent sequences of length n with exactly one descent.

Original entry on oeis.org

1, 6, 29, 124, 499, 1933, 7307, 27166, 99841, 363980, 1319404, 4763927, 17155264, 61672791, 221499015, 795198010, 2854898575, 10253237150, 36846414395, 132518215788, 477049025009, 1719101735260, 6201858101192, 22399768386170, 80998670324341, 293244129636085
Offset: 3

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 05 2014

Keywords

Examples

			a(4) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
		

Crossrefs

Column k=1 of A242352.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[jJean-François Alcover, Feb 09 2015, after A242352 *)

Formula

Recurrence: 2*(n+1)*(n+2)*(2*n+3)*(12397*n^7 - 189057*n^6 + 1186699*n^5 - 4027875*n^4 + 7966576*n^3 - 8920548*n^2 + 4726368*n - 164160)*a(n) = 2*(n+1)*(2*n + 1)*(74382*n^8 - 997975*n^7 + 5169531*n^6 - 12939205*n^5 + 13804539*n^4 + 4032932*n^3 - 23655372*n^2 + 20014848*n - 1477440)*a(n-1) - 2*(347116*n^9 - 3797013*n^8 + 13426236*n^7 - 10697862*n^6 - 45689304*n^5 + 115458855*n^4 - 47561392*n^3 - 85364460*n^2 + 57311424*n - 1477440)*a(n-2) - (1822359*n^10 - 28485611*n^9 + 180879786*n^8 - 605859318*n^7 + 1141835871*n^6 - 1127112699*n^5 + 285267312*n^4 + 592120604*n^3 - 783881808*n^2 + 409889664*n - 50388480)*a(n-3) - 2*(247940*n^10 - 5628293*n^9 + 49022694*n^8 - 212356554*n^7 + 479773884*n^6 - 459074385*n^5 - 250049558*n^4 + 1020252416*n^3 - 830684880*n^2 + 423719136*n - 432293760)*a(n-4) + 2*(n-4)*(2070299*n^9 - 30481583*n^8 + 181205557*n^7 - 572698754*n^6 + 1060137133*n^5 - 1157719883*n^4 + 582047111*n^3 + 378941580*n^2 - 897279300*n + 403878960)*a(n-5) + 6*(n-5)*(n-4)*(768614*n^8 - 9316516*n^7 + 43281239*n^6 - 101853145*n^5 + 131895047*n^4 - 75435871*n^3 - 41445228*n^2 + 118112292*n - 101468592)*a(n-6) + 117*(n-6)*(n-5)*(n-4)*(12397*n^7 - 102278*n^6 + 312694*n^5 - 496340*n^4 + 374821*n^3 + 103402*n^2 - 440568*n + 590400)*a(n-7). - Vaclav Kotesovec, Jun 06 2014
a(n) ~ c * d^n / n^(3/2), where d = 1/6*(847+33*sqrt(33))^(1/3) + 44/(3*(847+33*sqrt(33))^(1/3)) + 2/3 = 3.802619145513318... is the root of the equation 4*d^3 - 8*d^2 - 24*d - 13 = 0 and c = sqrt(2565 + 2*(3*(692007507 - 5151139*sqrt(33)))^(1/3) + 2*(3*(692007507 + 5151139*sqrt(33)))^(1/3)) / (4*sqrt(21*Pi)) = 2.695007157151120689163873119078514352395445402... . - Vaclav Kotesovec, Jun 06 2014, updated Mar 16 2024

A243475 Number of isoscent sequences of length n with exactly two descents.

Original entry on oeis.org

2, 28, 241, 1667, 10142, 56748, 299485, 1514445, 7415873, 35424718, 165963977, 765639729, 3488740303, 15739196772, 70434524941, 313136541466, 1384706596078, 6096641331963, 26747810596747, 117015840972949, 510745056446585, 2225207050547044, 9680854941464722
Offset: 5

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 05 2014

Keywords

Examples

			a(5) = 2: [0,0,2,1,0], [0,1,0,1,0].
		

Crossrefs

Column k=2 of A242352.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[jJean-François Alcover, Feb 09 2015, after A242352 *)

A243476 Number of isoscent sequences of length n with exactly three descents.

Original entry on oeis.org

10, 216, 2765, 27214, 227847, 1708700, 11832896, 77170252, 480381209, 2881934792, 16782041642, 95373448420, 531211249132, 2909490548577, 15712454516343, 83849134367589, 442957532385072, 2319975180476948, 12061609189508662, 62313958408668146, 320192732763382270
Offset: 7

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 05 2014

Keywords

Crossrefs

Column k=3 of A242352.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j < i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]] ; a[n_] := Coefficient[b[n - 1, 0, 0], x, 3]; Table[a[n], {n, 7, 40}] (* Jean-François Alcover, Feb 09 2015, after A242352 *)

A243477 Number of isoscent sequences of length n with exactly four descents.

Original entry on oeis.org

1, 98, 2637, 44051, 563444, 6054955, 57523592, 498540949, 4024955854, 30719216646, 224034574434, 1573966189886, 10719427410360, 71119561115093, 461496506508538, 2938387657219301, 18406158143420637, 113681266064450777, 693570688210367081, 4186481577282095644
Offset: 8

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 05 2014

Keywords

Crossrefs

Column k=4 of A242352.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j < i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]] ; a[n_] := Coefficient[b[n - 1, 0, 0], x, 4]; Table[a[n], {n, 8, 40}] (* Jean-François Alcover, Feb 09 2015, after A242352 *)

A243478 Number of isoscent sequences of length n with exactly five descents.

Original entry on oeis.org

22, 1546, 46947, 944701, 14745521, 193273378, 2228848403, 23305050081, 225560761204, 2051114040040, 17719591217257, 146674616051322, 1171101886353096, 9067551569835697, 68378670584901547, 504001041740002317, 3641720452674969516, 25859746275607624792
Offset: 10

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 05 2014

Keywords

Crossrefs

Column k=5 of A242352.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j < i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n - 1, 0, 0], x, 5]; Table[a[n], {n, 10, 40}] (* Jean-François Alcover, Feb 09 2015, after A242352 *)

A243479 Number of isoscent sequences of length n with exactly six descents.

Original entry on oeis.org

2, 570, 34643, 1139465, 26298831, 479669603, 7386945631, 100099764774, 1227140160022, 13879804132399, 146957303797639, 1472647088474040, 14087369324642004, 129522280702233381, 1150891407181302417, 9927963973481921295, 83454334937159452579
Offset: 11

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 05 2014

Keywords

Crossrefs

Column k=6 of A242352.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j < i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n - 1, 0, 0], x, 6]; Table[a[n], {n, 11, 40}] (* Jean-François Alcover, Feb 09 2015, after A242352 *)

A243480 Number of isoscent sequences of length n with exactly seven descents.

Original entry on oeis.org

130, 18196, 1027497, 35855578, 920132845, 19024724767, 334824869566, 5199938158961, 73073359931844, 946309985456857, 11449696018832655, 130815643776548834, 1423250326223813866, 14845562100052915605, 149281547622659687547, 1453772869428542126084
Offset: 13

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 05 2014

Keywords

Crossrefs

Column k=7 of A242352.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j < i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n - 1, 0, 0], x, 7]; Table[a[n], {n, 13, 40}] (* Jean-François Alcover, Feb 09 2015, after A242352 *)

A243481 Number of isoscent sequences of length n with exactly eight descents.

Original entry on oeis.org

17, 6867, 710088, 38504985, 1409180462, 39390143719, 903369758170, 17794252503829, 310620860769359, 4914610198933595, 71670394607559276, 975829774811610622, 12530984703191609205, 153000363388748917171, 1787972768823076763190, 20107368357857569858580
Offset: 14

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 05 2014

Keywords

Crossrefs

Column k=8 of A242352.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j < i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n - 1, 0, 0], x, 8]; Table[a[n], {n, 14, 40}] (* Jean-François Alcover, Feb 09 2015, after A242352 *)

A243482 Number of isoscent sequences of length n with exactly nine descents.

Original entry on oeis.org

1, 1842, 381540, 33260687, 1764436385, 67244544426, 2018462900473, 50530007996596, 1096301608172492, 21183116277395043, 371926458625987333, 6025302522233251390, 91147815762874899354, 1299862836761209689164, 17611186926254063273931, 228129250314546958924423
Offset: 15

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 05 2014

Keywords

Crossrefs

Column k=9 of A242352.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Expand[Sum[ If[j < i, x, 1] *b[n - 1, j, t + If[j == i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n - 1, 0, 0], x, 9]; Table[a[n], {n, 15, 40}] (* Jean-François Alcover, Feb 09 2015, after A242352 *)
Showing 1-10 of 12 results. Next