cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A138265 Number of upper triangular zero-one matrices with n ones and no zero rows or columns.

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 61, 271, 1372, 7795, 49093, 339386, 2554596, 20794982, 182010945, 1704439030, 17003262470, 180011279335, 2015683264820, 23801055350435, 295563725628564, 3850618520827590, 52514066450469255, 748191494586458700, 11115833059268126770
Offset: 0

Views

Author

Vladeta Jovovic, Mar 10 2008, Mar 11 2008

Keywords

Comments

Row sums of A193357.
This is also the number of rigid unlabeled interval orders with n points (see Brightwell-Keller, Theorem 2; or Dukes-Kitaev-Remmel-Steingrímsson, Theorem 8). - N. J. A. Sloane, Dec 04 2011 [Corrected by Vít Jelínek, Sep 04 2014.]
Number of length-n ascent sequences without flat steps (i.e., no two adjacent digits are equal). An ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(k)>=0 and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) gives the number of ascents of its argument. [Joerg Arndt, Nov 05 2012]

Examples

			From _Joerg Arndt_, Nov 05 2012: (Start)
The a(4) = 5 such matrices with 4 ones are (dots for zeros):
  1 . . .      1 1 .      1 . 1      1 1 .      1 . .
  . 1 . .      . . 1      . 1 .      . 1 .      . 1 1
  . . 1 .      . . 1      . . 1      . . 1      . . 1
  . . . 1
The a(5)=16 ascent sequences without flat steps are (dots for zeros):
  [ 1]   [ . 1 . 1 . ]
  [ 2]   [ . 1 . 1 2 ]
  [ 3]   [ . 1 . 1 3 ]
  [ 4]   [ . 1 . 2 . ]
  [ 5]   [ . 1 . 2 1 ]
  [ 6]   [ . 1 . 2 3 ]
  [ 7]   [ . 1 2 . 1 ]
  [ 8]   [ . 1 2 . 2 ]
  [ 9]   [ . 1 2 . 3 ]
  [10]   [ . 1 2 1 . ]
  [11]   [ . 1 2 1 2 ]
  [12]   [ . 1 2 1 3 ]
  [13]   [ . 1 2 3 . ]
  [14]   [ . 1 2 3 1 ]
  [15]   [ . 1 2 3 2 ]
  [16]   [ . 1 2 3 4 ]
(End)
		

Crossrefs

Column k=0 of A242153.
Column k=1 of A264909.
Row sums of A137252.

Programs

  • Maple
    g:=sum(product(1-1/(1+x)^i,i=1..n),n=0..35): gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=0..22);  # Emeric Deutsch, Mar 23 2008
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
         `if`(i=j, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+1))
        end:
    a:= n-> b(n-1, 0$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 09 2012, Jan 14 2015
  • Mathematica
    max = 25; g = Sum[Product[1 - 1/(1 - x)^i, {i, 1, n}], {n, 0, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n] // Abs, {n, 0, max-1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
  • Sage
    # Adaptation of the Maple program by Alois P. Heinz:
    @CachedFunction
    def b(n, i, t):
        if n<1: return 1
        return sum(b(n-1, j, t+(j>i)) for j in range(t+2))
    def a(n):
        if n<1: return 1
        return sum((-1)^(n-k)*binomial(n-1, k-1)*b(k-1, 0, 0) for k in range(n+1))
    [a(n) for n in range(33)]
    # Joerg Arndt, Feb 26 2014

Formula

G.f.: Sum_{n>=0} (Product_{i=1..n} 1-1/(1+x)^i).
G.f.: Sum_{n>=0} (1+x)^(n+1)*Product_{i=1..n} (1-(1+x)^i)^2. Proved by Bringmann-Li-Rhoades, and by Andrews-Jelínek. - Vít Jelínek, Sep 04 2014
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)*A079144(k). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*A022493(k).
G.f.: B(x/(1+x)) where B(x) is the g.f. of A022493; g.f.: Q(0,u) where u=x/(1+x), Q(k,u) = 1 + (1 - (1-x)^(2*k+1))/(1 - (1-(1-x)^(2*k+2))/(1 -(1-x)^(2*k+2) + 1/Q(k+1,u) )); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
Asymptotics (Brightwell and Keller, 2011): a(n) ~ 12*sqrt(3)/(exp(Pi^2/12)*Pi^(5/2)) * n!*sqrt(n)*(6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014
From Vít Jelínek, Sep 04 2014: (Start)
For each m, a(5m+4) mod 5 = 0. Conjectured by Andrews-Sellers, and proved by Garvan (see Remark 1.4(ii) in Garvan's paper).
For each m, a(5m+1) mod 5 = a(5m+2) mod 5 = 3*a(5m+3) mod 5. Proved by Garvan (see (1.17) in Garvan's paper).
The limit a(n)/A022493(n) is equal to exp(-Pi^2/6). This corresponds to the asymptotic probability that a random unlabeled interval order is rigid (See Brightwell-Keller; or Jelínek, Fact 5.2). (End)
Conjectural g.f.: 1 + Sum_{n >= 0} n/(1+x)^(n+1) * (Product_{i = 1..n} 1 - 1/(1+x)^i). Cf. A194530. - Peter Bala, Aug 21 2023

Extensions

More terms from Emeric Deutsch, Mar 23 2008

A238858 Triangle T(n,k) read by rows: T(n,k) is the number of length-n ascent sequences with exactly k descents.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 4, 1, 0, 0, 8, 7, 0, 0, 0, 16, 33, 4, 0, 0, 0, 32, 131, 53, 1, 0, 0, 0, 64, 473, 429, 48, 0, 0, 0, 0, 128, 1611, 2748, 822, 26, 0, 0, 0, 0, 256, 5281, 15342, 9305, 1048, 8, 0, 0, 0, 0, 512, 16867, 78339, 83590, 21362, 937, 1, 0, 0, 0, 0, 1024, 52905, 376159, 647891, 307660, 35841, 594, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 06 2014

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order k*(k+5)/2 = A055998(k) for k>0.
T(2n,n) gives A241871(n).
Last nonzero elements of rows give A241881(n).
Row sums give A022493.

Examples

			Triangle starts:
00:     1;
01:     1,      0;
02:     2,      0,       0;
03:     4,      1,       0,       0;
04:     8,      7,       0,       0,       0;
05:    16,     33,       4,       0,       0,      0;
06:    32,    131,      53,       1,       0,      0,     0;
07:    64,    473,     429,      48,       0,      0,     0,   0;
08:   128,   1611,    2748,     822,      26,      0,     0,   0, 0;
09:   256,   5281,   15342,    9305,    1048,      8,     0,   0, 0, 0;
10:   512,  16867,   78339,   83590,   21362,    937,     1,   0, 0, 0, 0;
11:  1024,  52905,  376159,  647891,  307660,  35841,   594,   0, 0, 0, 0, 0;
12:  2048, 163835, 1728458, 4537169, 3574869, 834115, 45747, 262, 0, 0, 0, 0, 0;
...
The 53 ascent sequences of length 5 together with their numbers of descents are (dots for zeros):
01:  [ . . . . . ]   0      28:  [ . 1 1 . 1 ]   1
02:  [ . . . . 1 ]   0      29:  [ . 1 1 . 2 ]   1
03:  [ . . . 1 . ]   1      30:  [ . 1 1 1 . ]   1
04:  [ . . . 1 1 ]   0      31:  [ . 1 1 1 1 ]   0
05:  [ . . . 1 2 ]   0      32:  [ . 1 1 1 2 ]   0
06:  [ . . 1 . . ]   1      33:  [ . 1 1 2 . ]   1
07:  [ . . 1 . 1 ]   1      34:  [ . 1 1 2 1 ]   1
08:  [ . . 1 . 2 ]   1      35:  [ . 1 1 2 2 ]   0
09:  [ . . 1 1 . ]   1      36:  [ . 1 1 2 3 ]   0
10:  [ . . 1 1 1 ]   0      37:  [ . 1 2 . . ]   1
11:  [ . . 1 1 2 ]   0      38:  [ . 1 2 . 1 ]   1
12:  [ . . 1 2 . ]   1      39:  [ . 1 2 . 2 ]   1
13:  [ . . 1 2 1 ]   1      40:  [ . 1 2 . 3 ]   1
14:  [ . . 1 2 2 ]   0      41:  [ . 1 2 1 . ]   2
15:  [ . . 1 2 3 ]   0      42:  [ . 1 2 1 1 ]   1
16:  [ . 1 . . . ]   1      43:  [ . 1 2 1 2 ]   1
17:  [ . 1 . . 1 ]   1      44:  [ . 1 2 1 3 ]   1
18:  [ . 1 . . 2 ]   1      45:  [ . 1 2 2 . ]   1
19:  [ . 1 . 1 . ]   2      46:  [ . 1 2 2 1 ]   1
20:  [ . 1 . 1 1 ]   1      47:  [ . 1 2 2 2 ]   0
21:  [ . 1 . 1 2 ]   1      48:  [ . 1 2 2 3 ]   0
22:  [ . 1 . 1 3 ]   1      49:  [ . 1 2 3 . ]   1
23:  [ . 1 . 2 . ]   2      50:  [ . 1 2 3 1 ]   1
24:  [ . 1 . 2 1 ]   2      51:  [ . 1 2 3 2 ]   1
25:  [ . 1 . 2 2 ]   1      52:  [ . 1 2 3 3 ]   0
26:  [ . 1 . 2 3 ]   1      53:  [ . 1 2 3 4 ]   0
27:  [ . 1 1 . . ]   1
There are 16 ascent sequences with no descent, 33 with one, and 4 with 2, giving row 4 [16, 33, 4, 0, 0, 0].
		

Crossrefs

Cf. A137251 (ascent sequences with k ascents), A242153 (ascent sequences with k flat steps).

Programs

  • Maple
    # b(n, i, t): polynomial in x where the coefficient of x^k is   #
    #             the number of postfixes of these sequences of     #
    #             length n having k descents such that the prefix   #
    #             has rightmost element i and exactly t ascents     #
    b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
          `if`(ji, 1, 0)), j=0..t+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[If[ji, 1, 0]], {j, 0, t+1}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
  • Sage
    # Transcription of the Maple program
    R. = QQ[]
    @CachedFunction
    def b(n,i,t):
        if n==0: return 1
        return sum( ( x if ji) ) for j in range(t+2) )
    def T(n): return b(n, -1, -1)
    for n in range(0,10): print(T(n).list())

A242352 Number T(n,k) of isoscent sequences of length n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=n+2-ceiling(2*sqrt(n+1)), read by rows.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 6, 21, 29, 2, 51, 124, 28, 127, 499, 241, 10, 323, 1933, 1667, 216, 1, 835, 7307, 10142, 2765, 98, 2188, 27166, 56748, 27214, 2637, 22, 5798, 99841, 299485, 227847, 44051, 1546, 2, 15511, 363980, 1514445, 1708700, 563444, 46947, 570
Offset: 0

Author

Joerg Arndt and Alois P. Heinz, May 11 2014

Keywords

Comments

An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)].
Row sums give A000110.
Last elements of rows give A243484.

Examples

			T(4,0) = 9: [0,0,0,0], [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,1], [0,0,1,2], [0,0,2,2], [0,1,1,1], [0,1,1,2].
T(4,1) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
T(5,2) = 2: [0,0,2,1,0], [0,1,0,1,0].
Triangle T(n,k) begins:
:    1;
:    1;
:    2;
:    4,     1;
:    9,     6;
:   21,    29,     2;
:   51,   124,    28;
:  127,   499,   241,    10;
:  323,  1933,  1667,   216,    1;
:  835,  7307, 10142,  2765,   98;
: 2188, 27166, 56748, 27214, 2637, 22;
		

Crossrefs

Cf. A048993 (for counting level steps), A242351 (for counting ascents), A137251 (ascent sequences counting ascents), A238858 (ascent sequences counting descents), A242153 (ascent sequences counting level steps), A083479.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[jJean-François Alcover, Feb 09 2015, after Maple *)

A242351 Number T(n,k) of isoscent sequences of length n with exactly k ascents; triangle T(n,k), n>=0, 0<=k<=n+3-ceiling(2*sqrt(n+2)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 11, 3, 1, 26, 25, 1, 57, 128, 17, 1, 120, 525, 229, 2, 1, 247, 1901, 1819, 172, 1, 502, 6371, 11172, 3048, 53, 1, 1013, 20291, 58847, 33065, 2751, 7, 1, 2036, 62407, 280158, 275641, 56905, 1422, 1, 4083, 187272, 1242859, 1945529, 771451, 61966, 436
Offset: 0

Author

Joerg Arndt and Alois P. Heinz, May 11 2014

Keywords

Comments

An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)].
Row sums give A000110.
Last elements of rows give A243237.

Examples

			T(4,0) = 1: [0,0,0,0].
T(4,1) = 11: [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,0], [0,0,1,1], [0,0,2,0], [0,0,2,1], [0,0,2,2], [0,1,0,0], [0,1,1,0], [0,1,1,1].
T(4,2) = 3: [0,0,1,2], [0,1,0,1], [0,1,1,2].
Triangle T(n,k) begins:
  1;
  1;
  1,    1;
  1,    4;
  1,   11,     3;
  1,   26,    25;
  1,   57,   128,    17;
  1,  120,   525,   229,     2;
  1,  247,  1901,  1819,   172;
  1,  502,  6371, 11172,  3048,   53;
  1, 1013, 20291, 58847, 33065, 2751, 7;
  ...
		

Crossrefs

Cf. A048993 (for counting level steps), A242352 (for counting descents), A137251 (ascent sequences counting ascents), A238858 (ascent sequences counting descents), A242153 (ascent sequences counting level steps), A083479.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
          `if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j>i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 09 2015, after Maple *)

A242154 Number of ascent sequences of length n with exactly one flat step.

Original entry on oeis.org

1, 2, 6, 20, 80, 366, 1897, 10976, 70155, 490930, 3733246, 30655152, 270334766, 2548153230, 25566585450, 272052199520, 3060191748695, 36282298766760, 452220051658265, 5911274512571280, 80862988937379390, 1155309461910323610, 17208404375488550100
Offset: 2

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=1 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == i, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 1]; Table[ a[n], {n, 2, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ 2*sqrt(3)/(exp(Pi^2/12)*sqrt(Pi)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

A242155 Number of ascent sequences of length n with exactly two flat steps.

Original entry on oeis.org

1, 3, 12, 50, 240, 1281, 7588, 49392, 350775, 2700115, 22399476, 199258488, 1892343362, 19111149225, 204532683600, 2312443695920, 27541725738255, 344681838284220, 4522200516582650, 62068382381998440, 889492878311173290, 13286058811968721515
Offset: 3

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=2 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 2]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ Pi^(3/2)/(2*sqrt(3)*exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

A242156 Number of ascent sequences of length n with exactly three flat steps.

Original entry on oeis.org

1, 4, 20, 100, 560, 3416, 22764, 164640, 1286175, 10800460, 97064396, 929872944, 9461716810, 101926129200, 1159018540400, 13874662175520, 174430929675615, 2297878921894800, 31655403616078550, 455168137467988560, 6819445400385661890, 106288470495749772120
Offset: 4

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=3 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 3]; Table[a[n], {n, 4, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ Pi^(7/2)/(36*sqrt(3)*exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

A242157 Number of ascent sequences of length n with exactly four flat steps.

Original entry on oeis.org

1, 5, 30, 175, 1120, 7686, 56910, 452760, 3858525, 35101495, 339725386, 3487023540, 37846867240, 433186049100, 5215583431800, 65904645333720, 872154648378075, 12063864339947700, 174104719888432025, 2617216790440934220, 40916672402313971340
Offset: 5

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=4 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 4]; Table[a[n], {n, 5, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ Pi^(11/2)/(864*sqrt(3)*exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

A242158 Number of ascent sequences of length n with exactly five flat steps.

Original entry on oeis.org

1, 6, 42, 280, 2016, 15372, 125202, 1086624, 10032165, 98284186, 1019176158, 11158475328, 128679348616, 1559469776760, 19819217040840, 263618581334880, 3663049523187915, 53081003095769880, 800881711486787315, 12562640594116484256, 204583362011569856700
Offset: 6

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=5 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 5]; Table[a[n], {n, 6, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ Pi^(15/2)/(25920*sqrt(3)*exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

A242159 Number of ascent sequences of length n with exactly six flat steps.

Original entry on oeis.org

1, 7, 56, 420, 3360, 28182, 250404, 2354352, 23408385, 245710465, 2717803088, 31615680096, 386038045848, 4938320959740, 66064056802800, 922665034672080, 13431181585022355, 203477178533784540, 3203526845947149260, 52344335808818684400, 886527902050136045700
Offset: 7

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=6 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 6]; Table[a[n], {n, 7, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ Pi^(19/2) / (6! * 6^4 * sqrt(3)*exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014
Showing 1-10 of 16 results. Next