A138265
Number of upper triangular zero-one matrices with n ones and no zero rows or columns.
Original entry on oeis.org
1, 1, 1, 2, 5, 16, 61, 271, 1372, 7795, 49093, 339386, 2554596, 20794982, 182010945, 1704439030, 17003262470, 180011279335, 2015683264820, 23801055350435, 295563725628564, 3850618520827590, 52514066450469255, 748191494586458700, 11115833059268126770
Offset: 0
From _Joerg Arndt_, Nov 05 2012: (Start)
The a(4) = 5 such matrices with 4 ones are (dots for zeros):
1 . . . 1 1 . 1 . 1 1 1 . 1 . .
. 1 . . . . 1 . 1 . . 1 . . 1 1
. . 1 . . . 1 . . 1 . . 1 . . 1
. . . 1
The a(5)=16 ascent sequences without flat steps are (dots for zeros):
[ 1] [ . 1 . 1 . ]
[ 2] [ . 1 . 1 2 ]
[ 3] [ . 1 . 1 3 ]
[ 4] [ . 1 . 2 . ]
[ 5] [ . 1 . 2 1 ]
[ 6] [ . 1 . 2 3 ]
[ 7] [ . 1 2 . 1 ]
[ 8] [ . 1 2 . 2 ]
[ 9] [ . 1 2 . 3 ]
[10] [ . 1 2 1 . ]
[11] [ . 1 2 1 2 ]
[12] [ . 1 2 1 3 ]
[13] [ . 1 2 3 . ]
[14] [ . 1 2 3 1 ]
[15] [ . 1 2 3 2 ]
[16] [ . 1 2 3 4 ]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- G. E. Andrews and J. A. Sellers, Congruences for the Fishburn Numbers, arXiv preprint arXiv:1401.5345 [math.NT], 2014 (see final paragraph of text).
- George E. Andrews and Vít Jelínek, On q-Series Identities Related to Interval Orders, arXiv:1309.6669 [math.CO], 2013.
- George E. Andrews and Vít Jelínek, On q-Series Identities Related to Interval Orders, European Journal of Combinatorics, Volume 39, July 2014, 178-187.
- Graham Brightwell and Mitchel T. Keller, Asymptotic Enumeration of Labelled Interval Orders, arXiv 1111.6766 [math.CO], 2011.
- Kathrin Bringmann, Yingkun Li, and Robert C. Rhoades, Asymptotics for the number of row-Fishburn matrices, European Journal of Combinatorics, vol.41, pp.183-196, (October-2014); preprint.
- Matthieu Dien, Antoine Genitrini, and Frederic Peschanski, A Combinatorial Study of Async/Await Processes, Conf.: 19th Int'l Colloq. Theor. Aspects of Comp. (2022), (Analytic) Combinatorics of concurrent systems.
- M. Dukes, S. Kitaev, J. Remmel, and E. Steingrímsson, Enumerating (2+2)-free posets by indistinguishable elements, arXiv:1006.2696 [math.CO], 2010.
- M. Dukes, S. Kitaev, J. Remmel, and E. Steingrímsson, Enumerating (2+2)-free posets by indistinguishable elements, Journal of Combinatorics, Volume 2, Issue 1, 2011, pp. 139-163.
- F. Garvan, Congruences and relations for the r-Fishburn numbers, arXiv:1406.5611 [math.NT], 2014.
- Ankush Goswami, Abhash Kumar Jha, Byungchan Kim, and Robert Osburn, Asymptotics and sign patterns for coefficients in expansions of Habiro elements, arXiv:2204.02628 [math.NT], 2022.
- Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
- V. Jelínek, Counting self-dual interval orders, arXiv:1106.2261 [math.CO], 2011.
- V. Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614.
- V. Jelinek, Catalan pairs and Fishburn triples, Adv. Appl. Math. 70 (2015) 1-31
- Soheir Mohamed Khamis, Exact Counting of Unlabeled Rigid Interval Posets Regarding or Disregarding Height, Order (journal), published on-line, 2011.
- Yan X. Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
-
g:=sum(product(1-1/(1+x)^i,i=1..n),n=0..35): gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=0..22); # Emeric Deutsch, Mar 23 2008
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
`if`(i=j, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+1))
end:
a:= n-> b(n-1, 0$2):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2012, Jan 14 2015
-
max = 25; g = Sum[Product[1 - 1/(1 - x)^i, {i, 1, n}], {n, 0, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n] // Abs, {n, 0, max-1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
-
# Adaptation of the Maple program by Alois P. Heinz:
@CachedFunction
def b(n, i, t):
if n<1: return 1
return sum(b(n-1, j, t+(j>i)) for j in range(t+2))
def a(n):
if n<1: return 1
return sum((-1)^(n-k)*binomial(n-1, k-1)*b(k-1, 0, 0) for k in range(n+1))
[a(n) for n in range(33)]
# Joerg Arndt, Feb 26 2014
A238858
Triangle T(n,k) read by rows: T(n,k) is the number of length-n ascent sequences with exactly k descents.
Original entry on oeis.org
1, 1, 0, 2, 0, 0, 4, 1, 0, 0, 8, 7, 0, 0, 0, 16, 33, 4, 0, 0, 0, 32, 131, 53, 1, 0, 0, 0, 64, 473, 429, 48, 0, 0, 0, 0, 128, 1611, 2748, 822, 26, 0, 0, 0, 0, 256, 5281, 15342, 9305, 1048, 8, 0, 0, 0, 0, 512, 16867, 78339, 83590, 21362, 937, 1, 0, 0, 0, 0, 1024, 52905, 376159, 647891, 307660, 35841, 594, 0, 0, 0, 0, 0
Offset: 0
Triangle starts:
00: 1;
01: 1, 0;
02: 2, 0, 0;
03: 4, 1, 0, 0;
04: 8, 7, 0, 0, 0;
05: 16, 33, 4, 0, 0, 0;
06: 32, 131, 53, 1, 0, 0, 0;
07: 64, 473, 429, 48, 0, 0, 0, 0;
08: 128, 1611, 2748, 822, 26, 0, 0, 0, 0;
09: 256, 5281, 15342, 9305, 1048, 8, 0, 0, 0, 0;
10: 512, 16867, 78339, 83590, 21362, 937, 1, 0, 0, 0, 0;
11: 1024, 52905, 376159, 647891, 307660, 35841, 594, 0, 0, 0, 0, 0;
12: 2048, 163835, 1728458, 4537169, 3574869, 834115, 45747, 262, 0, 0, 0, 0, 0;
...
The 53 ascent sequences of length 5 together with their numbers of descents are (dots for zeros):
01: [ . . . . . ] 0 28: [ . 1 1 . 1 ] 1
02: [ . . . . 1 ] 0 29: [ . 1 1 . 2 ] 1
03: [ . . . 1 . ] 1 30: [ . 1 1 1 . ] 1
04: [ . . . 1 1 ] 0 31: [ . 1 1 1 1 ] 0
05: [ . . . 1 2 ] 0 32: [ . 1 1 1 2 ] 0
06: [ . . 1 . . ] 1 33: [ . 1 1 2 . ] 1
07: [ . . 1 . 1 ] 1 34: [ . 1 1 2 1 ] 1
08: [ . . 1 . 2 ] 1 35: [ . 1 1 2 2 ] 0
09: [ . . 1 1 . ] 1 36: [ . 1 1 2 3 ] 0
10: [ . . 1 1 1 ] 0 37: [ . 1 2 . . ] 1
11: [ . . 1 1 2 ] 0 38: [ . 1 2 . 1 ] 1
12: [ . . 1 2 . ] 1 39: [ . 1 2 . 2 ] 1
13: [ . . 1 2 1 ] 1 40: [ . 1 2 . 3 ] 1
14: [ . . 1 2 2 ] 0 41: [ . 1 2 1 . ] 2
15: [ . . 1 2 3 ] 0 42: [ . 1 2 1 1 ] 1
16: [ . 1 . . . ] 1 43: [ . 1 2 1 2 ] 1
17: [ . 1 . . 1 ] 1 44: [ . 1 2 1 3 ] 1
18: [ . 1 . . 2 ] 1 45: [ . 1 2 2 . ] 1
19: [ . 1 . 1 . ] 2 46: [ . 1 2 2 1 ] 1
20: [ . 1 . 1 1 ] 1 47: [ . 1 2 2 2 ] 0
21: [ . 1 . 1 2 ] 1 48: [ . 1 2 2 3 ] 0
22: [ . 1 . 1 3 ] 1 49: [ . 1 2 3 . ] 1
23: [ . 1 . 2 . ] 2 50: [ . 1 2 3 1 ] 1
24: [ . 1 . 2 1 ] 2 51: [ . 1 2 3 2 ] 1
25: [ . 1 . 2 2 ] 1 52: [ . 1 2 3 3 ] 0
26: [ . 1 . 2 3 ] 1 53: [ . 1 2 3 4 ] 0
27: [ . 1 1 . . ] 1
There are 16 ascent sequences with no descent, 33 with one, and 4 with 2, giving row 4 [16, 33, 4, 0, 0, 0].
Cf.
A137251 (ascent sequences with k ascents),
A242153 (ascent sequences with k flat steps).
-
# b(n, i, t): polynomial in x where the coefficient of x^k is #
# the number of postfixes of these sequences of #
# length n having k descents such that the prefix #
# has rightmost element i and exactly t ascents #
b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
`if`(ji, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
seq(T(n), n=0..12);
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[If[ji, 1, 0]], {j, 0, t+1}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
-
# Transcription of the Maple program
R. = QQ[]
@CachedFunction
def b(n,i,t):
if n==0: return 1
return sum( ( x if ji) ) for j in range(t+2) )
def T(n): return b(n, -1, -1)
for n in range(0,10): print(T(n).list())
A242352
Number T(n,k) of isoscent sequences of length n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=n+2-ceiling(2*sqrt(n+1)), read by rows.
Original entry on oeis.org
1, 1, 2, 4, 1, 9, 6, 21, 29, 2, 51, 124, 28, 127, 499, 241, 10, 323, 1933, 1667, 216, 1, 835, 7307, 10142, 2765, 98, 2188, 27166, 56748, 27214, 2637, 22, 5798, 99841, 299485, 227847, 44051, 1546, 2, 15511, 363980, 1514445, 1708700, 563444, 46947, 570
Offset: 0
T(4,0) = 9: [0,0,0,0], [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,1], [0,0,1,2], [0,0,2,2], [0,1,1,1], [0,1,1,2].
T(4,1) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
T(5,2) = 2: [0,0,2,1,0], [0,1,0,1,0].
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 4, 1;
: 9, 6;
: 21, 29, 2;
: 51, 124, 28;
: 127, 499, 241, 10;
: 323, 1933, 1667, 216, 1;
: 835, 7307, 10142, 2765, 98;
: 2188, 27166, 56748, 27214, 2637, 22;
Cf.
A048993 (for counting level steps),
A242351 (for counting ascents),
A137251 (ascent sequences counting ascents),
A238858 (ascent sequences counting descents),
A242153 (ascent sequences counting level steps),
A083479.
-
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
seq(T(n), n=0..15);
-
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[jJean-François Alcover, Feb 09 2015, after Maple *)
A242351
Number T(n,k) of isoscent sequences of length n with exactly k ascents; triangle T(n,k), n>=0, 0<=k<=n+3-ceiling(2*sqrt(n+2)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 11, 3, 1, 26, 25, 1, 57, 128, 17, 1, 120, 525, 229, 2, 1, 247, 1901, 1819, 172, 1, 502, 6371, 11172, 3048, 53, 1, 1013, 20291, 58847, 33065, 2751, 7, 1, 2036, 62407, 280158, 275641, 56905, 1422, 1, 4083, 187272, 1242859, 1945529, 771451, 61966, 436
Offset: 0
T(4,0) = 1: [0,0,0,0].
T(4,1) = 11: [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,0], [0,0,1,1], [0,0,2,0], [0,0,2,1], [0,0,2,2], [0,1,0,0], [0,1,1,0], [0,1,1,1].
T(4,2) = 3: [0,0,1,2], [0,1,0,1], [0,1,1,2].
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4;
1, 11, 3;
1, 26, 25;
1, 57, 128, 17;
1, 120, 525, 229, 2;
1, 247, 1901, 1819, 172;
1, 502, 6371, 11172, 3048, 53;
1, 1013, 20291, 58847, 33065, 2751, 7;
...
Cf.
A048993 (for counting level steps),
A242352 (for counting descents),
A137251 (ascent sequences counting ascents),
A238858 (ascent sequences counting descents),
A242153 (ascent sequences counting level steps),
A083479.
-
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
seq(T(n), n=0..15);
-
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j>i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 09 2015, after Maple *)
A242154
Number of ascent sequences of length n with exactly one flat step.
Original entry on oeis.org
1, 2, 6, 20, 80, 366, 1897, 10976, 70155, 490930, 3733246, 30655152, 270334766, 2548153230, 25566585450, 272052199520, 3060191748695, 36282298766760, 452220051658265, 5911274512571280, 80862988937379390, 1155309461910323610, 17208404375488550100
Offset: 2
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == i, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 1]; Table[ a[n], {n, 2, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)
A242155
Number of ascent sequences of length n with exactly two flat steps.
Original entry on oeis.org
1, 3, 12, 50, 240, 1281, 7588, 49392, 350775, 2700115, 22399476, 199258488, 1892343362, 19111149225, 204532683600, 2312443695920, 27541725738255, 344681838284220, 4522200516582650, 62068382381998440, 889492878311173290, 13286058811968721515
Offset: 3
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 2]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)
A242156
Number of ascent sequences of length n with exactly three flat steps.
Original entry on oeis.org
1, 4, 20, 100, 560, 3416, 22764, 164640, 1286175, 10800460, 97064396, 929872944, 9461716810, 101926129200, 1159018540400, 13874662175520, 174430929675615, 2297878921894800, 31655403616078550, 455168137467988560, 6819445400385661890, 106288470495749772120
Offset: 4
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 3]; Table[a[n], {n, 4, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)
A242157
Number of ascent sequences of length n with exactly four flat steps.
Original entry on oeis.org
1, 5, 30, 175, 1120, 7686, 56910, 452760, 3858525, 35101495, 339725386, 3487023540, 37846867240, 433186049100, 5215583431800, 65904645333720, 872154648378075, 12063864339947700, 174104719888432025, 2617216790440934220, 40916672402313971340
Offset: 5
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 4]; Table[a[n], {n, 5, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)
A242158
Number of ascent sequences of length n with exactly five flat steps.
Original entry on oeis.org
1, 6, 42, 280, 2016, 15372, 125202, 1086624, 10032165, 98284186, 1019176158, 11158475328, 128679348616, 1559469776760, 19819217040840, 263618581334880, 3663049523187915, 53081003095769880, 800881711486787315, 12562640594116484256, 204583362011569856700
Offset: 6
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 5]; Table[a[n], {n, 6, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)
A242159
Number of ascent sequences of length n with exactly six flat steps.
Original entry on oeis.org
1, 7, 56, 420, 3360, 28182, 250404, 2354352, 23408385, 245710465, 2717803088, 31615680096, 386038045848, 4938320959740, 66064056802800, 922665034672080, 13431181585022355, 203477178533784540, 3203526845947149260, 52344335808818684400, 886527902050136045700
Offset: 7
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 6]; Table[a[n], {n, 7, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)
Showing 1-10 of 16 results.
Comments