A218685 O.g.f.: Sum_{n>=0} (1+n^3*x)^n * x^n/n! * exp(-(1+n^3*x)*x).
1, 0, 1, 6, 34, 270, 3415, 31230, 681026, 6949920, 230637870, 2546120514, 119281951006, 1394371349490, 87612425583018, 1069010047029672, 86763885548985810, 1094149501538197236, 111443560982774811439, 1442387644419293694144, 180179254059921915232864
Offset: 0
Keywords
Examples
O.g.f: A(x) = 1 + x^2 + 6*x^3 + 34*x^4 + 270*x^5 + 3415*x^6 +... where A(x) = exp(-x) + (1+x)*x*exp(-(1+x)*x) + (1+2^3*x)^2*x^2/2!*exp(-(1+2^3*x)*x) + (1+3^3*x)^3*x^3/3!*exp(-(1+3^3*x)*x) + (1+4^3*x)^4*x^4/4!*exp(-(1+4^3*x)*x) + (1+5^3*x)^5*x^5/5!*exp(-(1+5^3*x)*x) +... simplifies to a power series in x with integer coefficients.
Programs
-
PARI
{a(n)=polcoeff(sum(k=0,n,(1+k^3*x)^k*x^k/k!*exp(-x*(1+k^3*x)+x*O(x^n))),n)} for(n=0,30,print1(a(n),", "))
Comments