cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A218684 O.g.f.: Sum_{n>=0} (1+n^2*x)^n * x^n/n! * exp(-(1+n^2*x)*x).

Original entry on oeis.org

1, 0, 1, 2, 7, 18, 96, 260, 1851, 5270, 46515, 137942, 1447202, 4433772, 53787706, 169169912, 2326986783, 7477418982, 114916173009, 375898894514, 6380455164161, 21185872231238, 393499602818322, 1323362744628080, 26691270481453228, 90755667374332324
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2012

Keywords

Comments

Compare the o.g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-(1+n*x)*x).

Examples

			O.g.f: A(x) = 1 + x^2 + 2*x^3 + 7*x^4 + 18*x^5 + 96*x^6 + 260*x^7 +...
where
A(x) = exp(-x) + (1+x)*x*exp(-(1+x)*x) + (1+2^2*x)^2*x^2/2!*exp(-(1+2^2*x)*x) + (1+3^2*x)^3*x^3/3!*exp(-(1+3^2*x)*x) + (1+4^2*x)^4*x^4/4!*exp(-(1+4^2*x)*x) + (1+5^2*x)^5*x^5/5!*exp(-(1+5^2*x)*x) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(k=0,n,(1+k^2*x)^k*x^k/k!*exp(-x*(1+k^2*x)+x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))

A218685 O.g.f.: Sum_{n>=0} (1+n^3*x)^n * x^n/n! * exp(-(1+n^3*x)*x).

Original entry on oeis.org

1, 0, 1, 6, 34, 270, 3415, 31230, 681026, 6949920, 230637870, 2546120514, 119281951006, 1394371349490, 87612425583018, 1069010047029672, 86763885548985810, 1094149501538197236, 111443560982774811439, 1442387644419293694144, 180179254059921915232864
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2012

Keywords

Comments

Compare the o.g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-(1+n*x)*x).

Examples

			O.g.f: A(x) = 1 + x^2 + 6*x^3 + 34*x^4 + 270*x^5 + 3415*x^6 +...
where
A(x) = exp(-x) + (1+x)*x*exp(-(1+x)*x) + (1+2^3*x)^2*x^2/2!*exp(-(1+2^3*x)*x) + (1+3^3*x)^3*x^3/3!*exp(-(1+3^3*x)*x) + (1+4^3*x)^4*x^4/4!*exp(-(1+4^3*x)*x) + (1+5^3*x)^5*x^5/5!*exp(-(1+5^3*x)*x) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(k=0,n,(1+k^3*x)^k*x^k/k!*exp(-x*(1+k^3*x)+x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))

A218687 O.g.f.: Sum_{n>=0} n^n * (1+n^3*x)^n * x^n/n! * exp(-n*(1+n^3*x)*x).

Original entry on oeis.org

1, 1, 2, 31, 398, 10476, 296407, 12613297, 592445192, 36797742660, 2524966492661, 212912151736648, 19819138754732997, 2155966497948737905, 259256365067737582615, 35050667748654756208069, 5257919606219599751747894, 858816581875175776426876930
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2012

Keywords

Comments

Compare the o.g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-(1+n*x)*x).

Examples

			O.g.f: A(x) = 1 + x + 2*x^2 + 31*x^3 + 398*x^4 + 10476*x^5 + 296407*x^6 +...
where
A(x) = 1 + (1+x)*x*exp(-(1+x)*x) + 2^2*(1+2^3*x)^2*x^2/2!*exp(-2*(1+2^3*x)*x) + 3^3*(1+3^3*x)^3*x^3/3!*exp(-3*(1+3^3*x)*x) + 4^4*(1+4^3*x)^4*x^4/4!*exp(-4*(1+4^3*x)*x) + 5^5*(1+5^3*x)^5*x^5/5!*exp(-5*(1+5^3*x)*x) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(k=0,n,k^k*(1+k^3*x)^k*x^k/k!*exp(-k*x*(1+k^3*x)+x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
Showing 1-3 of 3 results.