A218695 Square array A(h,k) = (2^h-1)*A(h,k-1) + Sum_{i=1..h-1} binomial(h,h-i)*2^i*A(i,k-1), with A(1,k) = A(h,1) = 1; read by antidiagonals.
1, 1, 1, 1, 7, 1, 1, 25, 25, 1, 1, 79, 265, 79, 1, 1, 241, 2161, 2161, 241, 1, 1, 727, 16081, 41503, 16081, 727, 1, 1, 2185, 115465, 693601, 693601, 115465, 2185, 1, 1, 6559, 816985, 10924399, 24997921, 10924399, 816985, 6559, 1
Offset: 1
Examples
Array A(h,k) begins: ===================================================== h\k | 1 2 3 4 5 6 ... ----+------------------------------------------------ 1 | 1 1 1 1 1 1 ... 2 | 1 7 25 79 241 727 ... 3 | 1 25 265 2161 16081 115465 ... 4 | 1 79 2161 41503 693601 10924399 ... 5 | 1 241 16081 693601 24997921 831719761 ... 6 | 1 727 115465 10924399 831719761 57366997447 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
- G. Kreweras, Dénombrements systématiques de relations binaires externes, Math. Sci. Humaines 26 (1969) 5-15.
- G. Kreweras, Dénombrement des ordres étagés, Discrete Math., 53 (1985), 147-149.
Crossrefs
Programs
-
PARI
c(h,k)={(h<2 || k<2) & return(1); sum(i=1,h-1,binomial(h,h-i)*2^i*c(i,k-1))+(2^h-1)*c(h,k-1)} /* For better performance when h and k are large, insert the following memoization code before "sum(...)": cM=='cM & cM=matrix(h,k); my(s=matsize(cM)); s[1] >= h & s[2] >= k & cM[h,k] & return(cM[h,k]); s[1]
-
PARI
A(m, n) = sum(k=0, m, (-1)^(m-k) * binomial(m, k) * (2^k-1)^n ) \\ Andrew Howroyd, Mar 29 2023
Formula
From Andrew Howroyd, Mar 29 2023: (Start)
A(h, k) = Sum_{i=0..h} (-1)^(h-i) * binomial(h, i) * (2^i-1)^k.
A052332(n) = Sum_{i=1..n-1} binomial(n,i)*A(i, n-i) for n > 0. (End)
Comments