A218698 Number T(n,k) of ways to divide the partitions of n into nonempty consecutive subsequences each of which contains only equal parts and parts from distinct subsequences differ by at least k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 3, 2, 2, 6, 3, 2, 2, 14, 5, 4, 3, 3, 27, 7, 4, 3, 2, 2, 60, 11, 8, 6, 5, 4, 4, 117, 15, 8, 6, 4, 3, 2, 2, 246, 22, 13, 9, 8, 6, 5, 4, 4, 490, 30, 15, 12, 8, 7, 5, 4, 3, 3, 1002, 42, 22, 14, 12, 9, 8, 6, 5, 4, 4, 1998, 56, 24, 16, 12, 10, 7, 6, 4, 3, 2, 2
Offset: 0
Examples
T(4,0) = 14: [[1],[1],[1],[1]], [[1,1],[1],[1]], [[1],[1,1],[1]], [[1,1,1],[1]], [[1],[1],[1,1]], [[1,1],[1,1]], [[1],[1,1,1]], [[1,1,1,1]], [[1],[1],[2]], [[1,1],[2]], [[2],[2]], [[2,2]], [[1],[3]], [[4]]. T(4,1) = 5: [[1,1,1,1]], [[1,1],[2]], [[2,2]], [[1],[3]], [[4]]. T(4,2) = 4: [[1,1,1,1]], [[2,2]], [[1],[3]], [[4]]. T(4,3) = T(4,4) = A000005(4) = 3: [[1,1,1,1]], [[2,2]], [[4]]. Triangle T(n,k) begins: 1; 1, 1; 3, 2, 2; 6, 3, 2, 2; 14, 5, 4, 3, 3; 27, 7, 4, 3, 2, 2; 60, 11, 8, 6, 5, 4, 4; 117, 15, 8, 6, 4, 3, 2, 2; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +add(b(n-i*j, i-k, k), j=1..n/i))) end: T:= (n, k)-> b(n, n, k): seq(seq(T(n,k), k=0..n), n=0..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - k, k], {j, 1, n/i}]]]; T[n_, k_] := b[n, n, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Formula
G.f. of column k: 1 + Sum_{j>=1} x^j/(1-x^j) * Product_{i=1..j-1} (1+x^(k*i)/(1-x^i)).
Comments