A006951
Number of conjugacy classes in GL(n,2).
Original entry on oeis.org
1, 1, 3, 6, 14, 27, 60, 117, 246, 490, 1002, 1998, 4053, 8088, 16284, 32559, 65330, 130626, 261726, 523374, 1047690, 2095314, 4192479, 8384808, 16773552, 33546736, 67101273, 134202258, 268420086, 536839446, 1073710914, 2147420250, 4294904430, 8589807438
Offset: 0
For the 5 partitions of 4 (namely [1^4]; [2,1^2]; [2^2]; [3,1]; [4]) we have
(f(m) = 2^(m-1)*(2-1) = 2^(m-1) and)
f([1^4]) = 2^3 = 8,
f([2,1^2]) = 1*2^1 = 2,
f([2^2]) = 2^1 = 2,
f([3,1]) = 1*1 = 1,
f([4]) = 1,
the sum is 8+2+2+1+1 = 14 = a(4).
- _Joerg Arndt_, Jan 02 2013
- W. D. Smith, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 161
- I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981).
- N. J. A. Sloane, Transforms
-
/* The program does not work for n>19: */
[1] cat [NumberOfClasses(GL(n,2)): n in [1..19]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi Jan 24 2013
-
with(numtheory):
b:= n-> add(phi(d)*2^(n/d), d=divisors(n))/n-1:
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Oct 20 2012
-
b[n_] := Sum[EulerPhi[d]*2^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
Table[Sum[2^(Length[ptn]-Length[Split[ptn]]),{ptn,IntegerPartitions[n]}],{n,30}] (* Gus Wiseman, Jan 21 2019 *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-2*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 02 2013 */
A116931
Number of partitions of n in which each part, with the possible exception of the largest, occurs at least twice.
Original entry on oeis.org
1, 2, 2, 4, 4, 8, 8, 13, 15, 22, 24, 37, 40, 57, 64, 89, 98, 135, 149, 199, 224, 292, 325, 424, 472, 601, 676, 850, 950, 1191, 1329, 1643, 1845, 2258, 2524, 3082, 3442, 4158, 4659, 5591, 6246, 7472, 8338, 9903, 11072, 13077, 14586, 17184, 19150, 22431, 25019
Offset: 1
a(5) = 4 because we have [5], [3,1,1], [2,1,1,1] and [1,1,1,1,1].
q + 2*q^2 + 2*q^3 + 4*q^4 + 4*q^5 + 8*q^6 + 8*q^7 + 13*q^8 + 15*q^9 + ...
There are a(9) = 15 partitions of 9 where distinct parts differ by at least 2:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 3 1 1 1 1 1 1 ]
03: [ 3 3 1 1 1 ]
04: [ 3 3 3 ]
05: [ 4 1 1 1 1 1 ]
06: [ 4 4 1 ]
07: [ 5 1 1 1 1 ]
08: [ 5 2 2 ]
09: [ 5 3 1 ]
10: [ 6 1 1 1 ]
11: [ 6 3 ]
12: [ 7 1 1 ]
13: [ 7 2 ]
14: [ 8 1 ]
15: [ 9 ]
- _Joerg Arndt_, Jun 09 2013
- P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 52, Article 298.
-
g:=sum(x^k*product(1+x^(2*j)/(1-x^j),j=1..k-1)/(1-x^k),k=1..70): gser:=series(g,x=0,60): seq(coeff(gser,x^n),n=1..54);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-2), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=1..70); # Alois P. Heinz, Nov 04 2012
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-2], {j, 1, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
-
{a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k) * prod( j=1, k-1, 1 + x^(2*j) / (1 - x^j), 1 + x * O(x^(n-k)))), n))} /* Michael Somos, Jan 26 2008 */
A116932
Number of partitions of n in which each part, with the possible exception of the largest, occurs at least three times.
Original entry on oeis.org
1, 2, 2, 3, 3, 6, 6, 9, 12, 14, 16, 24, 25, 32, 40, 49, 56, 73, 81, 102, 120, 142, 162, 202, 227, 270, 316, 367, 419, 506, 565, 663, 767, 879, 998, 1179, 1317, 1517, 1739, 1979, 2232, 2588, 2883, 3295, 3742, 4220, 4737, 5426, 6037, 6828, 7701, 8642, 9651, 10939
Offset: 1
a(5) = 3 because we have [5], [2,1,1,1] and [1,1,1,1,1].
-
g:=sum(x^k*product(1+x^(3*j)/(1-x^j),j=1..k-1)/(1-x^k),k=1..70): gser:=series(g,x=0,62): seq(coeff(gser,x^n),n=1..58);
# second Maple program
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-3), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=1..70); # Alois P. Heinz, Nov 04 2012
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-3], {j, 1, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)
A218699
Number of partitions of n in which any two distinct parts differ by at least 4.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 5, 4, 8, 8, 12, 12, 19, 18, 24, 26, 36, 36, 48, 50, 70, 71, 92, 96, 129, 133, 168, 177, 225, 233, 294, 307, 382, 401, 488, 518, 635, 668, 803, 855, 1027, 1089, 1298, 1381, 1638, 1745, 2047, 2184, 2569, 2734, 3181, 3404, 3953, 4213, 4863, 5203
Offset: 0
a(5) = 2: [1,1,1,1,1], [5].
a(6) = 5: [1,1,1,1,1,1], [2,2,2], [3,3], [1,5], [6].
a(7) = 4: [1,1,1,1,1,1,1], [1,1,5], [1,6], [7].
a(8) = 8: [1,1,1,1,1,1,1,1], [2,2,2,2], [4,4], [1,1,1,5], [1,1,6], [2,6], [1,7], [8].
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-4), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i j, i - k, k], {j, 1, n/i}]]];
a[n_] := b[n, n, 4];
a /@ Range[0, 70] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
A218700
Number of partitions of n in which any two distinct parts differ by at least 5.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 3, 6, 7, 9, 10, 15, 15, 19, 23, 26, 28, 36, 37, 48, 52, 62, 67, 85, 93, 110, 122, 144, 157, 194, 205, 241, 265, 304, 338, 391, 422, 483, 533, 607, 661, 760, 822, 933, 1032, 1151, 1260, 1432, 1554, 1751, 1920, 2137, 2333, 2621, 2848, 3176
Offset: 0
a(6) = 4: [1,1,1,1,1,1], [2,2,2], [3,3], [6].
a(7) = 3: [1,1,1,1,1,1,1], [1,6], [7].
a(8) = 6: [1,1,1,1,1,1,1,1], [2,2,2,2], [4,4], [1,1,6], [1,7], [8].
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-5), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i j, i - k, k], {j, 1, n/i}]]];
a[n_] := b[n, n, 5];
a /@ Range[0, 70] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
A218701
Number of partitions of n in which any two distinct parts differ by at least 6.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 5, 5, 8, 7, 14, 11, 16, 19, 23, 22, 32, 29, 38, 40, 48, 48, 67, 63, 81, 85, 106, 106, 141, 138, 174, 180, 219, 224, 284, 282, 342, 356, 422, 431, 530, 532, 631, 660, 765, 789, 948, 965, 1123, 1184, 1356, 1408, 1658, 1703, 1967, 2076
Offset: 0
a(6) = 4: [1,1,1,1,1,1], [2,2,2], [3,3], [6].
a(7) = 2: [1,1,1,1,1,1,1], [7].
a(8) = 5: [1,1,1,1,1,1,1,1], [2,2,2,2], [4,4], [1,7], [8].
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-6), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
A218702
Number of partitions of n in which any two distinct parts differ by at least 7.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 4, 4, 6, 6, 11, 10, 13, 16, 19, 20, 25, 27, 33, 34, 39, 41, 51, 52, 61, 65, 80, 82, 99, 104, 126, 133, 156, 168, 199, 209, 243, 261, 302, 320, 372, 392, 447, 479, 537, 572, 650, 693, 770, 829, 920, 982, 1096, 1169, 1306, 1396, 1541
Offset: 0
a(8) = 4: [1,1,1,1,1,1,1,1], [2,2,2,2], [4,4], [8].
a(9) = 4: [1,1,1,1,1,1,1,1,1], [3,3,3], [1,8], [9].
a(10) = 6: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [1,1,8], [1,9], [10].
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-7), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
A218703
Number of partitions of n in which any two distinct parts differ by at least 8.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 4, 10, 7, 12, 13, 17, 16, 23, 21, 30, 30, 34, 35, 47, 43, 51, 52, 66, 63, 81, 77, 100, 99, 120, 121, 156, 150, 185, 189, 234, 230, 283, 281, 343, 350, 409, 414, 503, 497, 587, 600, 695, 703, 824, 830, 967, 988, 1122, 1148, 1333
Offset: 0
a(9) = 3: [1,1,1,1,1,1,1,1,1], [3,3,3], [9].
a(10) = 5: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [1,9], [10].
a(11) = 4: [1,1,1,1,1,1,1,1,1,1,1], [1,1,9], [1,10], [11].
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-8), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
A218704
Number of partitions of n in which any two distinct parts differ by at least 9.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 3, 8, 6, 9, 12, 14, 14, 20, 19, 24, 28, 29, 31, 41, 40, 44, 49, 54, 54, 69, 64, 77, 82, 94, 98, 119, 118, 139, 149, 173, 178, 215, 217, 253, 274, 306, 320, 375, 385, 440, 469, 521, 545, 626, 647, 718, 769, 838, 881, 994, 1026
Offset: 0
a(10) = 4: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10].
a(11) = 3: [1,1,1,1,1,1,1,1,1,1,1], [1,10], [11].
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-9), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
A218705
Number of partitions of n in which any two distinct parts differ by at least 10.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 7, 4, 8, 9, 13, 11, 18, 16, 23, 22, 27, 27, 36, 35, 41, 42, 51, 48, 61, 57, 69, 65, 80, 81, 98, 93, 115, 112, 144, 136, 170, 164, 202, 204, 244, 242, 296, 290, 353, 350, 415, 412, 493, 494, 576, 580, 671, 673, 794, 786, 903
Offset: 0
a(10) = 4: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10].
a(11) = 2: [1,1,1,1,1,1,1,1,1,1,1], [11].
a(12) = 7: [1,1,1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2,2], [3,3,3,3], [4,4,4], [6,6], [1,11], [12].
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-10), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
Showing 1-10 of 11 results.
Comments