cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A268193 Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of partitions of n which have k distinct parts i such that i+1 is also a part.

Original entry on oeis.org

1, 2, 2, 1, 4, 1, 4, 3, 8, 2, 1, 8, 6, 1, 13, 7, 2, 15, 11, 4, 22, 15, 4, 1, 24, 24, 7, 1, 37, 26, 12, 2, 40, 42, 16, 3, 57, 50, 22, 6, 64, 72, 33, 6, 1, 89, 84, 46, 11, 1, 98, 122, 60, 15, 2, 135, 141, 82, 24, 3, 149, 198, 106, 32, 5, 199, 231, 144, 45, 8, 224, 309, 187, 61, 10, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 13 2016

Keywords

Comments

T(n,k) = number of partitions of n having k singleton parts other than the largest part. Example: T(5,1) = 3 because we have [4,1'], [3,2'], [2,2,1'] (the counted singletons are marked). These partitions are connected by conjugation to those in the definition.
From Gus Wiseman, Jul 10 2025: (Start)
Also the number of integer partitions of n with k maximal subsequences of consecutive parts not decreasing by 1 (anti-runs). For example, row n = 8 counts partitions with the following anti-runs:
((8)) ((3,3),(2)) ((3),(2,2),(1))
((4,4)) ((4),(3,1)) ((3),(2),(1,1,1))
((5,3)) ((5,2),(1))
((6,2)) ((4,2),(1,1))
((7,1)) ((2,2,2),(1,1))
((4,2,2)) ((2,2),(1,1,1,1))
((6,1,1)) ((2),(1,1,1,1,1,1))
((2,2,2,2))
((3,3,1,1))
((5,1,1,1))
((4,1,1,1,1))
((3,1,1,1,1,1))
((1,1,1,1,1,1,1,1))
(End)

Examples

			T(5,1) = 3 because we have [3,2], [2,2,1], and [2,1,1,1].
T(9,2) = 4 because we have [3,2',1,1,1,1'], [3,2,2',1,1'], [3,3,2',1'], and [4,3',2'] (the i's are marked).
Triangle starts:
  1;
  2;
  2,1;
  4,1;
  4,3;
  8,2,1;
  8,6,1;
From _Gus Wiseman_, Jul 11 2025: (Start)
Row n = 8 counts the following partitions by number of singleton parts other than the largest part:
  (8)                (5,3)        (4,3,1)
  (4,4)              (6,2)        (5,2,1)
  (4,2,2)            (7,1)
  (6,1,1)            (3,3,2)
  (2,2,2,2)          (3,2,2,1)
  (3,3,1,1)          (4,2,1,1)
  (5,1,1,1)          (3,2,1,1,1)
  (2,2,2,1,1)
  (4,1,1,1,1)
  (2,2,1,1,1,1)
  (3,1,1,1,1,1)
  (2,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1)
(End)
		

Crossrefs

Row sums are A000041.
Row lengths are A003056.
For distinct parts instead of anti-runs we have A116608.
Column k = 1 is A116931.
For runs instead of anti-runs we have A384881.
The strict case is A384905.
The corresponding rank statistic is A356228, non-strict version A384906.
The proper case is A385814, runs A385815.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.

Programs

  • Maple
    g := add(x^j*mul(1+t*x^i+x^(2*i)/(1-x^i), i = 1 .. j-1)/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 27)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n to 25 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i, t) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1, t or j>0)*
          `if`(t and j=1, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, false)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 13 2016
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, t || j > 0]*If[t && j == 1, x, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, False]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1!=#2+1&]]==k&]],{n,0,10},{k,0,n}] (* Delete zeros for A268193. Gus Wiseman, Jul 10 2025 *)

Formula

T(n,0) = A116931(n).
Sum_{k>=1} T(n, k) = A000041(n) (the partition numbers).
Sum_{k>=1} k*T(n,k) = A024786(n-1).
G.f.: G(t,x) = Sum_{j>=1} ((x^j/(1-x^j))*Product_{i=1..j-1} (1 + tx^i + x^{2i}/(1-x^i))).

A350842 Number of integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 40, 54, 69, 89, 118, 146, 187, 239, 297, 372, 468, 575, 711, 880, 1075, 1314, 1610, 1947, 2359, 2864, 3438, 4135, 4973, 5936, 7090, 8466, 10044, 11922, 14144, 16698, 19704, 23249, 27306, 32071, 37639, 44019, 51457, 60113
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (221)    (222)     (61)
                            (2111)   (321)     (322)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Heinz number rankings are in parentheses below.
The version for no difference 0 is A000009.
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The version for all differences > -2 is A034296, strict A001227.
The opposite version is A072670.
The version for no difference -1 is A116931 (A319630), strict A003114.
The multiplicative version is A350837 (A350838), strict A350840.
The strict case is A350844.
The complement for quotients is counted by A350846 (A350845).
A000041 = integer partitions.
A027187 = partitions of even length.
A027193 = partitions of odd length (A026424).
A323092 = double-free partitions (A320340), strict A120641.
A325534 = separable partitions (A335433).
A325535 = inseparable partitions (A335448).
A350839 = partitions with a gap and conjugate gap (A350841).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}]

A325160 Products of distinct, non-consecutive primes. Squarefree numbers not divisible by any two consecutive primes.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 110, 111, 113, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions into distinct non-consecutive parts (counted by A003114). The nonsquarefree case is A319630, which gives the Heinz numbers of integer partitions with no consecutive parts (counted by A116931).
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 52, 515, 5146, 51435, 514416, 5144232, 51442384, ... . Apparently, the asymptotic density of this sequence exists and equals 0.51442... . - Amiram Eldar, Sep 24 2022

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  26: {1,6}
  29: {10}
  31: {11}
  33: {2,5}
  34: {1,7}
  37: {12}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&]
  • PARI
    isok(k) = {if (issquarefree(k), my(v = apply(primepi, factor(k)[,1])); ! #select(x->(v[x+1]-v[x] == 1), [1..#v-1]));} \\ Michel Marcus, Jan 09 2021

A239955 Number of partitions p of n such that (number of distinct parts of p) <= max(p) - min(p).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 7, 12, 17, 27, 38, 54, 75, 104, 137, 187, 245, 322, 418, 542, 691, 887, 1121, 1417, 1777, 2228, 2767, 3441, 4247, 5235, 6424, 7871, 9594, 11688, 14173, 17168, 20723, 24979, 30008, 36010, 43085, 51479, 61357, 73032, 86718, 102852, 121718
Offset: 0

Views

Author

Clark Kimberling, Mar 30 2014

Keywords

Comments

From Gus Wiseman, Jun 26 2022: (Start)
Also the number of partitions of n with at least one gap, i.e., partitions whose parts do not form a contiguous interval. These partitions are ranked by A073492. For example, the a(0) = 0 through a(8) = 12 partitions are:
. . . . (31) (41) (42) (52) (53)
(311) (51) (61) (62)
(411) (331) (71)
(3111) (421) (422)
(511) (431)
(4111) (521)
(31111) (611)
(3311)
(4211)
(5111)
(41111)
(311111)
Also the number of non-constant partitions of n with a repeated non-maximal part, ranked by A065201. The a(0) = 0 through a(8) = 12 partitions are:
. . . . (211) (311) (411) (322) (422)
(2111) (2211) (511) (611)
(3111) (3211) (3221)
(21111) (4111) (3311)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(End)

Examples

			a(6) counts these 4 partitions:  51, 42, 411, 3111.
		

Crossrefs

The complement is counted by A034296 (strict A137793), ranked by A073491.
These partitions are ranked by A073492, conjugate A065201.
Applying the condition to the conjugate gives A350839, ranked by A350841.
A000041 counts integer partitions, strict A000009.
A090858 counts partitions with a single hole, ranked by A325284.
A116931 counts partitions with differences != -1, strict A003114.
A116932 counts partitions with differences != -1 or -2, strict A025157.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> combinat[numbpart](n)-add(b(n, k), k=0..n):
    seq(a(n), n=0..47);  # Alois P. Heinz, Aug 18 2025
  • Mathematica
    z = 60; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[p_] := f[p] = Max[p] - Min[p]; g[n_] := g[n] = IntegerPartitions[n];
    Table[Count[g[n], p_ /; d[p] < f[p]], {n, 0, z}]  (*A239954*)
    Table[Count[g[n], p_ /; d[p] <= f[p]], {n, 0, z}] (*A239955*)
    Table[Count[g[n], p_ /; d[p] == f[p]], {n, 0, z}] (*A239956*)
    Table[Count[g[n], p_ /; d[p] > f[p]], {n, 0, z}]  (*A034296*)
    Table[Count[g[n], p_ /; d[p] >= f[p]], {n, 0, z}] (*A239958*)
    (* second program *)
    Table[Length[Select[IntegerPartitions[n],Min@@Differences[#]<-1&]],{n,0,30}] (* Gus Wiseman, Jun 26 2022 *)
  • PARI
    qs(a,q,n) = {prod(k=0,n,1-a*q^k)}
    A_q(N) = {if(N<4, vector(N+1,i,0), my(q='q+O('q^(N-2)), g= sum(i=2,N+1, q^i/qs(q,q,i-1)*sum(j=1,i-1, q^(2*j)*qs(q^2,q^2,j-2)))); concat([0,0,0,0], Vec(g)))} \\ John Tyler Rascoe, Aug 16 2025

Formula

a(n) = A000041(n) - A034296(n).
G.f.: Sum_{i>1} q^i/(q;q){i-1} * Sum{j=1..i-1} (q^2;q^2){j-2} where (a;q)_k = Product{i>=0..k} (1-a*q^i). - John Tyler Rascoe, Aug 16 2025

A350839 Number of integer partitions of n with a difference < -1 and a conjugate difference < -1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 7, 11, 17, 26, 39, 54, 81, 108, 148, 201, 269, 353, 467, 601, 779, 995, 1272, 1605, 2029, 2538, 3171, 3941, 4881, 6012, 7405, 9058, 11077, 13478, 16373, 19817, 23953, 28850, 34692, 41599, 49802, 59461, 70905, 84321, 100155, 118694
Offset: 0

Views

Author

Gus Wiseman, Jan 24 2022

Keywords

Comments

We define a difference of a partition to be a difference of two adjacent parts.

Examples

			The a(5) = 1 through a(10) = 17 partitions:
  (311)  (411)   (511)    (422)     (522)      (622)
         (3111)  (4111)   (611)     (711)      (811)
                 (31111)  (3311)    (4221)     (4222)
                          (4211)    (4311)     (4411)
                          (5111)    (5211)     (5221)
                          (41111)   (6111)     (5311)
                          (311111)  (33111)    (6211)
                                    (42111)    (7111)
                                    (51111)    (42211)
                                    (411111)   (43111)
                                    (3111111)  (52111)
                                               (61111)
                                               (331111)
                                               (421111)
                                               (511111)
                                               (4111111)
                                               (31111111)
		

Crossrefs

Allowing -1 gives A144300 = non-constant partitions.
Taking one of the two conditions gives A239955, ranked by A073492, A065201.
These partitions are ranked by A350841.
A000041 = integer partitions, strict A000009.
A034296 = flat (contiguous) partitions, strict A001227.
A073491 = numbers whose prime indices have no gaps, strict A137793.
A090858 = partitions with a single hole, ranked by A325284.
A116931 = partitions with differences != -1, strict A003114.
A116932 = partitions with differences != -1 or -2, strict A025157.
A277103 = partitions with the same number of odd parts as their conjugate.
A350837 = partitions with no adjacent doublings, strict A350840.
A350842 = partitions with differences != -2, strict A350844, sets A005314.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],(Min@@Differences[#]<-1)&&(Min@@Differences[conj[#]]<-1)&]],{n,0,30}]

A350844 Number of strict integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 4, 4, 7, 7, 8, 11, 12, 15, 18, 21, 23, 31, 32, 40, 45, 54, 59, 73, 78, 94, 106, 122, 136, 161, 177, 203, 231, 259, 293, 334, 372, 417, 476, 525, 592, 663, 742, 821, 931, 1020, 1147, 1271, 1416, 1558, 1752, 1916, 2137, 2357, 2613, 2867
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2022

Keywords

Examples

			The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
  1   2   3    4   5    6     7    8     9     A      B     C
          21       32   51    43   62    54    73     65    84
                   41   321   52   71    63    82     74    93
                              61   521   72    91     83    A2
                                         81    541    92    B1
                                         432   721    A1    543
                                         621   4321   632   651
                                                      821   732
                                                            741
                                                            921
                                                            6321
		

Crossrefs

The version for no difference 0 is A000009.
The version for no difference > -2 is A001227, non-strict A034296.
The version for no difference -1 is A003114 (A325160).
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The opposite version is A072670.
The multiplicative version is A350840, non-strict A350837 (A350838).
The non-strict version is A350842.
A000041 counts integer partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length (A026424).
A116931 counts partitions with no difference -1 (A319630).
A323092 counts double-free integer partitions (A320340) strict A120641.
A325534 counts separable partitions (A335433).
A325535 counts inseparable partitions (A335448).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],0|-2]&]],{n,0,30}]

A116932 Number of partitions of n in which each part, with the possible exception of the largest, occurs at least three times.

Original entry on oeis.org

1, 2, 2, 3, 3, 6, 6, 9, 12, 14, 16, 24, 25, 32, 40, 49, 56, 73, 81, 102, 120, 142, 162, 202, 227, 270, 316, 367, 419, 506, 565, 663, 767, 879, 998, 1179, 1317, 1517, 1739, 1979, 2232, 2588, 2883, 3295, 3742, 4220, 4737, 5426, 6037, 6828, 7701, 8642, 9651, 10939
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2006

Keywords

Comments

Also, partitions of n in which any two distinct parts differ by at least 3. Example: a(5) = 3 because we have [5], [4,1] and [1,1,1,1,1].

Examples

			a(5) = 3 because we have [5], [2,1,1,1] and [1,1,1,1,1].
		

Crossrefs

Column k=3 of A218698. - Alois P. Heinz, Nov 04 2012

Programs

  • Maple
    g:=sum(x^k*product(1+x^(3*j)/(1-x^j),j=1..k-1)/(1-x^k),k=1..70): gser:=series(g,x=0,62): seq(coeff(gser,x^n),n=1..58);
    # second Maple program
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-3), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=1..70);  # Alois P. Heinz, Nov 04 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-3], {j, 1, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)

Formula

G.f.: sum(x^k*product(1+x^(3j)/(1-x^j), j=1..k-1)/(1-x^k), k=1..infinity). More generally, the g.f. of partitions of n in which each part, with the possible exception of the largest, occurs at least b times, is sum(x^k*product(1+x^(bj)/(1-x^j), j=1..k-1)/(1-x^k), k=1..infinity). It is also the g.f. of partitions of n in which any two distinct parts differ by at least b.
log(a(n)) ~ sqrt((2*Pi^2/3 + 4*c)*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869... - Vaclav Kotesovec, Jan 28 2022

A218698 Number T(n,k) of ways to divide the partitions of n into nonempty consecutive subsequences each of which contains only equal parts and parts from distinct subsequences differ by at least k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 6, 3, 2, 2, 14, 5, 4, 3, 3, 27, 7, 4, 3, 2, 2, 60, 11, 8, 6, 5, 4, 4, 117, 15, 8, 6, 4, 3, 2, 2, 246, 22, 13, 9, 8, 6, 5, 4, 4, 490, 30, 15, 12, 8, 7, 5, 4, 3, 3, 1002, 42, 22, 14, 12, 9, 8, 6, 5, 4, 4, 1998, 56, 24, 16, 12, 10, 7, 6, 4, 3, 2, 2
Offset: 0

Views

Author

Alois P. Heinz, Nov 04 2012

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains terms with k <= n. T(n,k) = T(n,n) = A000005(n) for k >= n. For k>0: T(n,k) = number of partitions of n in which any two distinct parts differ by at least k, or, equivalently, T(n,k) = number of partitions of n in which each part, with the possible exception of the largest, occurs at least k times.

Examples

			T(4,0) = 14: [[1],[1],[1],[1]], [[1,1],[1],[1]], [[1],[1,1],[1]], [[1,1,1],[1]], [[1],[1],[1,1]], [[1,1],[1,1]], [[1],[1,1,1]], [[1,1,1,1]], [[1],[1],[2]], [[1,1],[2]], [[2],[2]], [[2,2]], [[1],[3]], [[4]].
T(4,1) = 5: [[1,1,1,1]], [[1,1],[2]], [[2,2]], [[1],[3]], [[4]].
T(4,2) = 4: [[1,1,1,1]], [[2,2]], [[1],[3]], [[4]].
T(4,3) = T(4,4) = A000005(4) = 3: [[1,1,1,1]], [[2,2]], [[4]].
Triangle T(n,k) begins:
    1;
    1,  1;
    3,  2,  2;
    6,  3,  2,  2;
   14,  5,  4,  3,  3;
   27,  7,  4,  3,  2,  2;
   60, 11,  8,  6,  5,  4,  4;
  117, 15,  8,  6,  4,  3,  2,  2;
  ...
		

Crossrefs

Main diagonal gives: A000005.
T(2n,n) gives A319776.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1, k) +add(b(n-i*j, i-k, k), j=1..n/i)))
        end:
    T:= (n, k)-> b(n, n, k):
    seq(seq(T(n,k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] :=  b[n, i, k] =  If[n == 0, 1, If[i < 1, 0,  b[n, i - 1, k] + Sum[b[n - i*j, i - k, k], {j, 1, n/i}]]]; T[n_, k_] := b[n, n, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

G.f. of column k: 1 + Sum_{j>=1} x^j/(1-x^j) * Product_{i=1..j-1} (1+x^(k*i)/(1-x^i)).

A350841 Heinz numbers of integer partitions with a difference < -1 and a conjugate difference < -1.

Original entry on oeis.org

20, 28, 40, 44, 52, 56, 63, 68, 76, 80, 84, 88, 92, 99, 100, 104, 112, 116, 117, 124, 126, 132, 136, 140, 148, 152, 153, 156, 160, 164, 168, 171, 172, 176, 184, 188, 189, 196, 198, 200, 204, 207, 208, 212, 220, 224, 228, 232, 234, 236, 244, 248, 252, 260, 261
Offset: 1

Views

Author

Gus Wiseman, Jan 26 2022

Keywords

Comments

We define a difference of a partition to be a difference of two adjacent parts.

Examples

			The terms together with their prime indices begin:
   20: (3,1,1)
   28: (4,1,1)
   40: (3,1,1,1)
   44: (5,1,1)
   52: (6,1,1)
   56: (4,1,1,1)
   63: (4,2,2)
   68: (7,1,1)
   76: (8,1,1)
   80: (3,1,1,1,1)
   84: (4,2,1,1)
   88: (5,1,1,1)
   92: (9,1,1)
   99: (5,2,2)
		

Crossrefs

Heinz number rankings are in parentheses below.
Taking just one condition gives (A073492) and (A065201), counted by A239955.
These partitions are counted by A350839.
A000041 = integer partitions, strict A000009.
A034296 = partitions with no gaps (A073491), strict A001227 (A073485).
A090858 = partitions with a single gap of size 1 (A325284).
A116931 = partitions with no successions (A319630), strict A003114.
A116932 = partitions with no successions or gaps of size 1, strict A025157.
A350842 = partitions with no gaps of size 1, strict A350844, sets A005314.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],(Min@@Differences[Reverse[primeMS[#]]]<-1)&&(Min@@Differences[conj[primeMS[#]]]<-1)&]

A350837 Number of integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 18, 24, 31, 41, 53, 70, 87, 112, 140, 178, 221, 277, 344, 428, 526, 648, 792, 971, 1180, 1436, 1738, 2103, 2533, 3049, 3660, 4387, 5242, 6259, 7450, 8860, 10511, 12453, 14723, 17387, 20489, 24121, 28343, 33269, 38982, 45632, 53327
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2022

Keywords

Comments

The first of these partitions that is not double-free (see A323092 for definition) is (4,3,2).

Examples

			The a(1) = 1 through a(7) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (32)     (33)      (43)
                    (31)    (41)     (51)      (52)
                    (1111)  (311)    (222)     (61)
                            (11111)  (411)     (322)
                                     (3111)    (331)
                                     (111111)  (511)
                                               (4111)
                                               (31111)
                                               (1111111)
		

Crossrefs

The version with quotients >= 2 is A000929, sets A018819.
<= 2 is A342094, ranked by A342191.
< 2 is A342096, sets A045690, strict A342097.
> 2 is A342098, sets A040039.
The sets version (subsets of prescribed maximum) is A045691.
These partitions are ranked by A350838.
The strict case is A350840.
A version for differences is A350842, strict A350844.
The complement is counted by A350846, ranked by A350845.
A000041 = integer partitions.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free partitions, ranked by A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], FreeQ[Divide@@@Partition[#,2,1],2]&]],{n,0,15}]
Showing 1-10 of 20 results. Next