A356606 Number of strict integer partitions of n where all parts have neighbors.
1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 2, 3, 2, 2, 5, 2, 4, 5, 5, 4, 8, 5, 7, 9, 8, 8, 13, 10, 11, 16, 13, 15, 20, 18, 18, 27, 21, 26, 31, 30, 30, 43, 34, 42, 49, 48, 48, 65, 56, 65, 76, 74, 77, 97, 88, 98, 117, 111, 119, 143, 137, 146, 175, 165, 182, 208
Offset: 0
Keywords
Examples
The a(n) partitions for n = 0, 1, 3, 9, 15, 18, 20, 24 (A = 10, B = 11): () . (21) (54) (87) (765) (7643) (987) (432) (654) (6543) (8732) (8754) (54321) (7632) (9821) (9843) (8721) (65432) (A932) (65421) (BA21) (87432) (87621) (765321)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 301 terms from John Tyler Rascoe)
- John Tyler Rascoe, Python program
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Function[ptn,UnsameQ@@ptn&&And@@Table[MemberQ[ptn,x-1]||MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]
-
Python
# see linked program
Formula
G.f.: 1 + Sum_{i>0} A(x,i), where A(x,i) = x^((2*i)+1) * G(x,i+1) for i > 0, is the g.f. for partitions of this kind with least part i, and G(x,k) = 1 + x^(k+1) * G(x,k+1) + Sum_{m>=0} x^(2*(k+m)+5) * G(x,m+k+3). - John Tyler Rascoe, Feb 16 2024
Comments