A356606
Number of strict integer partitions of n where all parts have neighbors.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 2, 3, 2, 2, 5, 2, 4, 5, 5, 4, 8, 5, 7, 9, 8, 8, 13, 10, 11, 16, 13, 15, 20, 18, 18, 27, 21, 26, 31, 30, 30, 43, 34, 42, 49, 48, 48, 65, 56, 65, 76, 74, 77, 97, 88, 98, 117, 111, 119, 143, 137, 146, 175, 165, 182, 208
Offset: 0
The a(n) partitions for n = 0, 1, 3, 9, 15, 18, 20, 24 (A = 10, B = 11):
() . (21) (54) (87) (765) (7643) (987)
(432) (654) (6543) (8732) (8754)
(54321) (7632) (9821) (9843)
(8721) (65432) (A932)
(65421) (BA21)
(87432)
(87621)
(765321)
-
Table[Length[Select[IntegerPartitions[n], Function[ptn,UnsameQ@@ptn&&And@@Table[MemberQ[ptn,x-1]||MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]
-
# see linked program
A384884
Number of integer partitions of n with all distinct lengths of maximal gapless runs (decreasing by 0 or 1).
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 46, 60, 79, 104, 131, 170, 215, 271, 342, 431, 535, 670, 830, 1019, 1258, 1547, 1881, 2298, 2787, 3359, 4061, 4890, 5849, 7010, 8361, 9942, 11825, 14021, 16558, 19561, 23057, 27084, 31821, 37312, 43627, 50999, 59500, 69267
Offset: 0
The partition y = (6,6,4,3,3,2) has maximal gapless runs ((6,6),(4,3,3,2)), with lengths (2,4), so y is counted under a(24).
The a(1) = 1 through a(8) = 18 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (211) (221) (222) (322) (332)
(1111) (311) (321) (331) (422)
(2111) (411) (421) (431)
(11111) (2211) (511) (521)
(3111) (2221) (611)
(21111) (3211) (2222)
(111111) (4111) (3221)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
For subsets instead of strict partitions we have
A384175.
For equal instead of distinct lengths we have
A384887.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356236 counts partitions with a neighborless part, singleton case
A356235.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A008284,
A044813,
A047993,
A242882,
A287170,
A325324,
A325325,
A356226,
A356230,
A356233,
A356234,
A384176,
A384177,
A384886.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]
A356607
Number of strict integer partitions of n with at least one neighborless part.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 20, 24, 30, 36, 41, 52, 60, 71, 84, 100, 114, 137, 158, 183, 214, 248, 283, 330, 379, 432, 499, 570, 648, 742, 846, 955, 1092, 1234, 1395, 1580, 1786, 2005, 2270, 2548, 2861, 3216, 3610, 4032, 4526, 5055, 5642, 6304, 7031, 7820, 8720, 9694
Offset: 0
The a(0) = 0 through a(9) = 6 partitions:
. (1) (2) (3) (4) (5) (6) (7) (8) (9)
(31) (41) (42) (52) (53) (63)
(51) (61) (62) (72)
(421) (71) (81)
(431) (531)
(521) (621)
-
Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]
A355394
Number of integer partitions of n such that, for all parts x, x - 1 or x + 1 is also a part.
Original entry on oeis.org
1, 0, 0, 1, 1, 3, 3, 6, 6, 10, 11, 16, 18, 25, 30, 38, 47, 59, 74, 90, 112, 136, 171, 203, 253, 299, 372, 438, 536, 631, 767, 900, 1085, 1271, 1521, 1774, 2112, 2463, 2910, 3389, 3977, 4627, 5408, 6276, 7304, 8459, 9808, 11338, 13099, 15112, 17404, 20044, 23018, 26450, 30299, 34746, 39711, 45452, 51832
Offset: 0
The a(0) = 1 through a(9) = 11 partitions:
() . . (21) (211) (32) (321) (43) (332) (54)
(221) (2211) (322) (3221) (432)
(2111) (21111) (2221) (22211) (3222)
(3211) (32111) (3321)
(22111) (221111) (22221)
(211111) (2111111) (32211)
(222111)
(321111)
(2211111)
(21111111)
These partitions are ranked by
A356736.
-
Table[Length[Select[IntegerPartitions[n],Function[ptn,!Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]
A356237
Heinz numbers of integer partitions with a neighborless singleton.
Original entry on oeis.org
2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
5: {3}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
26: {1,6}
28: {1,1,4}
The complement is counted by
A355393.
These partitions are counted by
A356235.
Not requiring a singleton gives
A356734.
A003963 multiplies together the prime indices of n.
A356236 counts partitions with a neighborless part, complement
A355394.
A356607 counts strict partitions w/ a neighborless part, complement
A356606.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Function[ptn,Or@@Table[Count[ptn,x]==1&&!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS]
A355393
Number of integer partitions of n such that, for all parts x of multiplicity 1, either x - 1 or x + 1 is also a part.
Original entry on oeis.org
1, 0, 1, 2, 3, 4, 6, 7, 10, 14, 17, 23, 32, 39, 51, 67, 83, 105, 134, 165, 206, 256, 312, 385, 475, 573, 697, 849, 1021, 1231, 1483, 1771, 2121, 2534, 3007, 3575, 4245, 5008, 5914, 6979, 8198, 9626, 11292, 13201, 15430, 18010, 20960, 24389, 28346, 32855, 38066
Offset: 0
The a(0) = 1 through a(8) = 10 partitions:
() . (11) (21) (22) (32) (33) (43) (44)
(111) (211) (221) (222) (322) (332)
(1111) (2111) (321) (2221) (2222)
(11111) (2211) (3211) (3221)
(21111) (22111) (3311)
(111111) (211111) (22211)
(1111111) (32111)
(221111)
(2111111)
(11111111)
The complement is counted by
A356235.
These partitions are ranked by the complement of
A356237.
-
Table[Length[Select[IntegerPartitions[n],Function[ptn,!Or@@Table[Count[ptn,x]==1&&!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]
A356236
Number of integer partitions of n with a neighborless part.
Original entry on oeis.org
0, 1, 2, 2, 4, 4, 8, 9, 16, 20, 31, 40, 59, 76, 105, 138, 184, 238, 311, 400, 515, 656, 831, 1052, 1322, 1659, 2064, 2572, 3182, 3934, 4837, 5942, 7264, 8872, 10789, 13109, 15865, 19174, 23105, 27796, 33361, 39956, 47766, 56985, 67871, 80675, 95750, 113416
Offset: 0
The a(1) = 1 through a(8) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (111) (22) (41) (33) (52)
(31) (311) (42) (61)
(1111) (11111) (51) (331)
(222) (421)
(411) (511)
(3111) (4111)
(111111) (31111)
(1111111)
These partitions are ranked by the complement of
A356736.
-
Table[Length[Select[IntegerPartitions[n],Function[ptn,Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]
A384887
Number of integer partitions of n with all equal lengths of maximal gapless runs (decreasing by 0 or 1).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 9, 10, 14, 18, 21, 26, 35, 39, 46, 58, 68, 79, 97, 111, 131, 155, 177, 206, 246, 278, 318, 373, 423, 483, 563, 632, 722, 827, 931, 1058, 1209, 1354, 1528, 1736, 1951, 2188, 2475, 2762, 3097, 3488, 3886, 4342, 4876, 5414, 6038, 6741, 7482
Offset: 0
The partition y = (6,5,5,5,3,3,2,1) has maximal gapless runs ((6,5,5,5),(3,3,2,1)), with lengths (4,4), so y is counted under a(30).
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (2111) (222) (322) (71)
(11111) (321) (2221) (332)
(2211) (3211) (2222)
(21111) (22111) (3221)
(111111) (211111) (3311)
(1111111) (22211)
(32111)
(221111)
(2111111)
(11111111)
For distinct instead of equal lengths we have
A384884.
For subsets instead of strict partitions we have
A243815.
Without counting decreases by 0 we get
A384904.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356236 counts partitions with a neighborless part, singleton case
A356235.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A008284,
A044813,
A047993,
A325324,
A325325,
A356226,
A356230,
A356233,
A356234,
A384175,
A384177,
A384880.
-
Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]
A384885
Number of integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 13, 15, 18, 22, 28, 31, 38, 45, 53, 62, 74, 86, 105, 123, 146, 171, 208, 242, 290, 340, 399, 469, 552, 639, 747, 862, 999, 1150, 1326, 1514, 1736, 1979, 2256, 2560, 2909, 3283, 3721, 4191, 4726, 5311, 5973, 6691, 7510, 8396, 9395
Offset: 0
The partition y = (8,6,3,3,3,1) has maximal anti-runs ((8,6,3),(3),(3,1)), with lengths (3,1,2), so y is counted under a(24).
The partition z = (8,6,5,3,3,1) has maximal anti-runs ((8,6),(5,3),(3,1)), with lengths (2,2,2), so z is not counted under a(26).
The a(1) = 1 through a(9) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(3,1) (4,1) (4,2) (5,2) (5,3) (6,3)
(3,1,1) (5,1) (6,1) (6,2) (7,2)
(4,1,1) (3,3,1) (7,1) (8,1)
(4,2,1) (4,2,2) (4,4,1)
(5,1,1) (4,3,1) (5,2,2)
(5,2,1) (5,3,1)
(6,1,1) (6,2,1)
(7,1,1)
For subsets instead of strict partitions we have
A384177, for runs
A384175.
For equal instead of distinct lengths we have
A384888, for runs
A384887.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356236 counts partitions with a neighborless part, singleton case
A356235.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A008284,
A047966,
A242882,
A287170,
A325324,
A325325,
A329739,
A356226,
A356230,
A356234,
A384886.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,15}]
A356734
Heinz numbers of integer partitions with at least one neighborless part.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78, 79, 80, 81, 82, 83
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
These partitions are counted by
A356236.
A003963 multiplies together the prime indices of n.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Function[ptn,Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS]
Showing 1-10 of 15 results.
Comments