A116674
Triangle read by rows: T(n,k) is the number of partitions of n into odd parts and having exactly k distinct parts (n>=1, k>=1).
Original entry on oeis.org
1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 3, 1, 5, 3, 4, 1, 2, 7, 1, 2, 8, 2, 2, 10, 3, 2, 11, 5, 2, 13, 7, 4, 12, 11, 1, 19, 11, 1, 2, 18, 17, 1, 3, 20, 21, 2, 2, 22, 27, 3, 2, 25, 32, 5, 4, 24, 41, 7, 2, 30, 46, 11, 2, 31, 56, 15, 2, 36, 62, 22, 3, 33, 80, 25, 1, 2, 39, 87, 36, 1, 4, 38, 103, 45, 2, 2, 45
Offset: 1
From _Gus Wiseman_, Jun 24 2025: (Start)
Triangle begins:
1: 1
2: 1
3: 2
4: 1 1
5: 2 1
6: 2 2
7: 2 3
8: 1 5
9: 3 4 1
10: 2 7 1
11: 2 8 2
12: 2 10 3
13: 2 11 5
14: 2 13 7
15: 4 12 11
16: 1 19 11 1
17: 2 18 17 1
18: 3 20 21 2
19: 2 22 27 3
20: 2 25 32 5
Row n = 9 counts the following partitions into odd parts by number of distinct parts:
(9) (7,1,1) (5,3,1)
(3,3,3) (3,3,1,1,1)
(1,1,1,1,1,1,1,1,1) (5,1,1,1,1)
(3,1,1,1,1,1,1)
Row n = 9 counts the following strict partitions by number of maximal runs:
(9) (6,3) (5,3,1)
(5,4) (7,2)
(4,3,2) (8,1)
(6,2,1)
(End)
A047993 counts partitions with max part = length.
A152140 counts partitions into odd parts by length.
A268193 counts partitions by number of maximal anti-runs, strict
A384905.
A384881 counts partitions by number of maximal runs.
-
g:=product(1+t*x^(2*j-1)/(1-x^(2*j-1)),j=1..35): gser:=simplify(series(g,x=0,34)): for n from 1 to 29 do P[n]:=coeff(gser,x^n) od: for n from 1 to 29 do seq(coeff(P[n],t,j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form
# second Maple program:
with(numtheory):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-2)*`if`(j=0, 1, x), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(
b(n, iquo(n+1, 2)*2-1)):
seq(T(n), n=1..30); # Alois P. Heinz, Mar 08 2015
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-2]*If[j == 0, 1, x], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, Quotient[n+1, 2]*2-1]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n],OddQ[Times@@#]&&Length[Union[#]]==k&]],{n,1,12},{k,1,Floor[Sqrt[n]]}] (* Gus Wiseman, Jun 24 2025 *)
A384884
Number of integer partitions of n with all distinct lengths of maximal gapless runs (decreasing by 0 or 1).
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 46, 60, 79, 104, 131, 170, 215, 271, 342, 431, 535, 670, 830, 1019, 1258, 1547, 1881, 2298, 2787, 3359, 4061, 4890, 5849, 7010, 8361, 9942, 11825, 14021, 16558, 19561, 23057, 27084, 31821, 37312, 43627, 50999, 59500, 69267
Offset: 0
The partition y = (6,6,4,3,3,2) has maximal gapless runs ((6,6),(4,3,3,2)), with lengths (2,4), so y is counted under a(24).
The a(1) = 1 through a(8) = 18 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (211) (221) (222) (322) (332)
(1111) (311) (321) (331) (422)
(2111) (411) (421) (431)
(11111) (2211) (511) (521)
(3111) (2221) (611)
(21111) (3211) (2222)
(111111) (4111) (3221)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
For subsets instead of strict partitions we have
A384175.
For equal instead of distinct lengths we have
A384887.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356236 counts partitions with a neighborless part, singleton case
A356235.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A008284,
A044813,
A047993,
A242882,
A287170,
A325324,
A325325,
A356226,
A356230,
A356233,
A356234,
A384176,
A384177,
A384886.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]
A243815
Number of length n words on alphabet {0,1} such that the length of every maximal block of 0's (runs) is the same.
Original entry on oeis.org
1, 2, 4, 8, 14, 24, 39, 62, 97, 151, 233, 360, 557, 864, 1344, 2099, 3290, 5176, 8169, 12931, 20524, 32654, 52060, 83149, 133012, 213069, 341718, 548614, 881572, 1417722, 2281517, 3673830, 5918958, 9540577, 15384490, 24817031, 40045768, 64637963, 104358789
Offset: 0
0110 is a "good" word because the length of both its runs of 0's is 1.
Words of the form 11...1 are good words because the condition is vacuously satisfied.
a(5) = 24 because there are 32 length 5 binary words but we do not count: 00010, 00101, 00110, 01000, 01001, 01100, 10010, 10100.
For distinct instead of equal lengths we have
A384175, complement
A384176.
For anti-runs instead of runs we have
A384889, for partitions
A384888.
For permutations instead of subsets we have
A384892, distinct instead of equal
A384891.
The complement is counted by
A385214.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A384887 counts partitions with equal lengths of gapless runs, distinct
A384884.
-
a:= n-> 1 + add(add((d-> binomial(d+j, d))(n-(i*j-1))
, j=1..iquo(n+1, i)), i=2..n+1):
seq(a(n), n=0..50); # Alois P. Heinz, Jun 11 2014
-
nn=30;Prepend[Map[Total,Transpose[Table[Drop[CoefficientList[Series[ (1+x^k)/(1-x-x^(k+1))-1/(1-x),{x,0,nn}],x],1],{k,1,nn}]]],0]+1
Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}] (* Gus Wiseman, Jun 23 2025 *)
A384885
Number of integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 13, 15, 18, 22, 28, 31, 38, 45, 53, 62, 74, 86, 105, 123, 146, 171, 208, 242, 290, 340, 399, 469, 552, 639, 747, 862, 999, 1150, 1326, 1514, 1736, 1979, 2256, 2560, 2909, 3283, 3721, 4191, 4726, 5311, 5973, 6691, 7510, 8396, 9395
Offset: 0
The partition y = (8,6,3,3,3,1) has maximal anti-runs ((8,6,3),(3),(3,1)), with lengths (3,1,2), so y is counted under a(24).
The partition z = (8,6,5,3,3,1) has maximal anti-runs ((8,6),(5,3),(3,1)), with lengths (2,2,2), so z is not counted under a(26).
The a(1) = 1 through a(9) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(3,1) (4,1) (4,2) (5,2) (5,3) (6,3)
(3,1,1) (5,1) (6,1) (6,2) (7,2)
(4,1,1) (3,3,1) (7,1) (8,1)
(4,2,1) (4,2,2) (4,4,1)
(5,1,1) (4,3,1) (5,2,2)
(5,2,1) (5,3,1)
(6,1,1) (6,2,1)
(7,1,1)
For subsets instead of strict partitions we have
A384177, for runs
A384175.
For equal instead of distinct lengths we have
A384888, for runs
A384887.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356236 counts partitions with a neighborless part, singleton case
A356235.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A008284,
A047966,
A242882,
A287170,
A325324,
A325325,
A329739,
A356226,
A356230,
A356234,
A384886.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,15}]
A384881
Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive parts decreasing by 1.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 3, 0, 1, 0, 2, 2, 2, 0, 1, 0, 2, 3, 3, 2, 0, 1, 0, 2, 5, 3, 2, 2, 0, 1, 0, 1, 8, 4, 4, 2, 2, 0, 1, 0, 3, 5, 10, 4, 3, 2, 2, 0, 1, 0, 2, 9, 9, 9, 5, 3, 2, 2, 0, 1, 0, 2, 11, 13, 9, 9, 4, 3, 2, 2, 0, 1
Offset: 0
The partition (5,4,2,1,1) has maximal runs ((5,4),(2,1),(1)) so is counted under T(13,3) = 23.
Row n = 9 counts the following partitions:
9 63 333 6111 33111 411111 3111111 111111111
54 72 441 22221 51111 2211111 21111111
432 81 522 42111 222111
621 531 321111
3321 711
3222
4221
4311
5211
32211
Triangle begins:
1
0 1
0 1 1
0 2 0 1
0 1 3 0 1
0 2 2 2 0 1
0 2 3 3 2 0 1
0 2 5 3 2 2 0 1
0 1 8 4 4 2 2 0 1
0 3 5 10 4 3 2 2 0 1
0 2 9 9 9 5 3 2 2 0 1
0 2 11 13 9 9 4 3 2 2 0 1
0 2 13 15 17 8 10 4 3 2 2 0 1
0 2 14 23 16 17 8 9 4 3 2 2 0 1
0 2 16 26 26 19 16 9 9 4 3 2 2 0 1
0 4 13 37 32 26 19 16 8 9 4 3 2 2 0 1
For distinct parts instead of maximal runs we have
A116608.
The strict case appears to be
A116674.
For anti-runs instead of runs we have
A268193.
Partitions with distinct runs of this type are counted by
A384882, gapless
A384884.
-
Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1==#2+1&]]==k&]],{n,0,10},{k,0,n}]
-
tri(n) = {(n*(n+1)/2)}
B_list(N) = {my(v = vector(N, i, 0)); v[1] = q*t; for(m=2,N, v[m] = t * (q^tri(m) + sum(i=1,m-1, q^tri(i) * v[m-i] * (q^((m-i)*(i-1))/(1 - q^(m-i)) - q^((m-i)*i) + O('q^(N-tri(i)+1)))))); v}
A_qt(max_row) = {my(N = max_row+1, B = B_list(N), g = 1 + sum(m=1,N, B[m]/(1 - q^m)) + O('q^(N+1))); vector(N, n, Vecrev(polcoeff(g, n-1)))} \\ John Tyler Rascoe, Aug 18 2025
A384904
Number of integer partitions of n with all equal lengths of maximal runs of consecutive parts decreasing by 1 but not by 0.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 9, 9, 14, 17, 23, 25, 40, 41, 59, 68, 92, 99, 140, 151, 204, 229, 296, 328, 433, 476, 606, 685, 858, 955, 1203, 1336, 1654, 1858, 2266, 2537, 3102, 3453, 4169, 4680, 5611, 6262, 7495, 8358, 9927, 11105, 13096, 14613, 17227, 19179, 22459
Offset: 0
The partition (6,5,5,4,2,1) has maximal runs ((6,5),(5,4),(2,1)), with lengths (2,2,2), so is counted under a(23).
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (311) (51) (61) (62)
(11111) (222) (331) (71)
(321) (511) (422)
(411) (4111) (611)
(3111) (31111) (2222)
(111111) (1111111) (3221)
(3311)
(5111)
(41111)
(311111)
(11111111)
For subsets instead of strict partitions we have
A243815, distinct lengths
A384175.
For distinct instead of equal lengths we have
A384882, counting gaps of 0
A384884.
-
Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2==#1-1&]&]],{n,0,30}]
-
A_q(N) = {Vec(1+sum(k=1,floor(-1/2+sqrt(2+2*N)), sum(i=1,(N/(k*(k+1)/2))+1, q^((k*i*(2+i*(k-1)))/2)/(1-q^(k*i))*prod(j=1,i-1, 1 + q^(2*k*j)/(1 - q^(k*j))))) + O('q^(N+1)))} \\ John Tyler Rascoe, Aug 20 2025
A384888
Number of integer partitions of n with all equal lengths of maximal anti-runs (decreasing by more than 1).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 9, 10, 13, 17, 20, 24, 32, 36, 44, 55, 64, 75, 92, 105, 125, 147, 169, 195, 231, 263, 303, 351, 401, 458, 532, 600, 686, 784, 889, 1010, 1152, 1296, 1468, 1662, 1875, 2108, 2384, 2669, 3001, 3373, 3775, 4222, 4734, 5278, 5896, 6576, 7322
Offset: 0
The partition y = (10,6,6,4,3,1) has maximal anti-runs ((10,6),(6,4),(3,1)), with lengths (2,2,2), so y is counted under a(30).
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (2111) (222) (322) (71)
(11111) (321) (2221) (332)
(2211) (3211) (2222)
(21111) (22111) (3221)
(111111) (211111) (22211)
(1111111) (32111)
(221111)
(2111111)
(11111111)
The strict case is new, distinct
A384880.
For distinct instead of equal lengths we have
A384885.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356236 counts partitions with a neighborless part, singleton case
A356235.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A008284,
A044813,
A047993,
A242882,
A287170,
A325325,
A356226,
A384175,
A384176,
A384178,
A384886.
-
Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,15}]
A384882
Number of integer partitions of n with all distinct lengths of maximal runs of consecutive parts decreasing by 1 but not by 0.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 2, 5, 4, 5, 6, 9, 7, 12, 12, 11, 16, 18, 17, 25, 25, 23, 33, 35, 36, 42, 52, 45, 58, 64, 60, 77, 91, 79, 109, 108, 105, 129, 149, 134, 170, 179, 177, 213, 236, 208, 275, 281, 282, 323, 359, 330, 410, 433, 440, 474, 541, 508, 614, 631, 635
Offset: 0
The partition (6,5,5,5,3,2) has maximal runs ((6,5),(5),(5),(3,2)), with lengths (2,1,1,2), so is not counted under a(26).
The partition (6,5,5,5,4,3,2) has maximal runs ((6,5),(5),(5,4,3,2)), with lengths (2,1,4), so is counted under a(30).
The a(1) = 1 through a(13) = 12 partitions:
1 2 3 4 5 6 7 8 9 A B C D
21 211 32 321 43 332 54 433 65 543 76
221 322 431 432 532 443 651 544
421 521 621 541 542 732 643
3211 3321 721 632 921 652
4321 821 6321 832
4322 43221 A21
5321 4432
43211 5431
7321
43321
432211
For subsets instead of strict partitions we have
A384175, equal lengths
A243815.
For equal instead of distinct lengths we have
A384904, strict case
A384886.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2==#1-1&]&]],{n,0,30}]
A385215
Number of maximal sparse submultisets of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1
The sparse submultisets of the prime indices of n = 8 are {{},{1},{1,1},{1,1,1}}, with maximization {{1,1,1}}. So a(8) = 1.
The sparse submultisets of the prime indices of n = 462 are {{},{1},{2},{4},{5},{1,4},{2,4},{1,5},{2,5}}, with maximization {{1,4},{1,5},{2,4},{2,5}}, so a(462) = 4.
The prime indices of n together their a(n) maximal sparse submultisets for n = 1, 6, 210, 462, 30030, 46410:
{} {1,2} {1,2,3,4} {1,2,4,5} {1,2,3,4,5,6} {1,2,3,4,6,7}
------------------------------------------------------------
{} {1} {1,3} {1,4} {2,5} {1,3,6}
{2} {1,4} {1,5} {1,3,5} {1,3,7}
{2,4} {2,4} {1,3,6} {1,4,6}
{2,5} {1,4,6} {1,4,7}
{2,4,6} {2,4,6}
{2,4,7}
This is the maximal case of
A166469.
For binary instead of prime indices we have
A384883, maximal case of
A245564.
The greatest number whose prime indices are one of these submultisets is
A385216.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A384887 counts partitions with equal lengths of gapless runs, distinct
A384884.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
maxq[els_]:=Select[els,Not[Or@@Table[Divisible[oth,#],{oth,DeleteCases[els,#]}]]&];
Table[Length[maxq[Select[Divisors[n],FreeQ[Differences[prix[#]],1]&]]],{n,30}]
A385814
Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal proper anti-runs (sequences decreasing by more than 1).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 0, 3, 2, 3, 1, 1, 1, 0, 3, 4, 2, 3, 1, 1, 1, 0, 4, 5, 4, 3, 3, 1, 1, 1, 0, 5, 5, 6, 5, 3, 3, 1, 1, 1, 0, 6, 8, 7, 6, 6, 3, 3, 1, 1, 1, 0, 7, 9, 10, 8, 7, 6, 3, 3, 1, 1, 1
Offset: 0
The partition (8,5,4,2,1) has maximal proper anti-runs ((8,5),(4,2),(1)) so is counted under T(20,3).
The partition (8,5,3,2,2) has maximal proper anti-runs ((8,5,3),(2),(2)) so is also counted under T(20,3).
Row n = 8 counts the following partitions:
. 8 611 5111 41111 32111 221111 2111111 11111111
71 521 4211 3221 311111
62 44 332 2222 22211
53 431 3311
422
Triangle begins:
1
0 1
0 1 1
0 1 1 1
0 2 1 1 1
0 2 2 1 1 1
0 3 2 3 1 1 1
0 3 4 2 3 1 1 1
0 4 5 4 3 3 1 1 1
0 5 5 6 5 3 3 1 1 1
0 6 8 7 6 6 3 3 1 1 1
0 7 9 10 8 7 6 3 3 1 1 1
0 9 11 13 12 9 8 6 3 3 1 1 1
0 10 14 16 15 13 10 8 6 3 3 1 1 1
0 12 19 18 21 17 14 11 8 6 3 3 1 1 1
0 14 21 26 23 24 19 15 11 8 6 3 3 1 1 1
0 17 26 31 33 28 26 20 16 11 8 6 3 3 1 1 1
0 19 32 37 40 39 31 28 21 16 11 8 6 3 3 1 1 1
0 23 38 47 50 47 45 34 29 22 16 11 8 6 3 3 1 1 1
0 26 45 57 61 61 54 48 36 30 22 16 11 8 6 3 3 1 1 1
0 31 53 71 75 76 70 60 51 37 31 22 16 11 8 6 3 3 1 1 1
For anti-runs instead of proper anti-runs we have
A268193.
The corresponding rank statistic is
A356228.
For proper runs instead of proper anti-runs we have
A384881.
For runs instead of proper anti-runs we have
A385815.
A116608 counts partitions by distinct parts.
Cf.
A001227,
A008284,
A089259,
A116674,
A239455,
A325325,
A356226,
A384880,
A384885,
A384887,
A384906.
-
Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1>#2+1&]]==k&]],{n,0,10},{k,0,n}]
Showing 1-10 of 12 results.
Comments