A243815
Number of length n words on alphabet {0,1} such that the length of every maximal block of 0's (runs) is the same.
Original entry on oeis.org
1, 2, 4, 8, 14, 24, 39, 62, 97, 151, 233, 360, 557, 864, 1344, 2099, 3290, 5176, 8169, 12931, 20524, 32654, 52060, 83149, 133012, 213069, 341718, 548614, 881572, 1417722, 2281517, 3673830, 5918958, 9540577, 15384490, 24817031, 40045768, 64637963, 104358789
Offset: 0
0110 is a "good" word because the length of both its runs of 0's is 1.
Words of the form 11...1 are good words because the condition is vacuously satisfied.
a(5) = 24 because there are 32 length 5 binary words but we do not count: 00010, 00101, 00110, 01000, 01001, 01100, 10010, 10100.
For distinct instead of equal lengths we have
A384175, complement
A384176.
For anti-runs instead of runs we have
A384889, for partitions
A384888.
For permutations instead of subsets we have
A384892, distinct instead of equal
A384891.
The complement is counted by
A385214.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A384887 counts partitions with equal lengths of gapless runs, distinct
A384884.
-
a:= n-> 1 + add(add((d-> binomial(d+j, d))(n-(i*j-1))
, j=1..iquo(n+1, i)), i=2..n+1):
seq(a(n), n=0..50); # Alois P. Heinz, Jun 11 2014
-
nn=30;Prepend[Map[Total,Transpose[Table[Drop[CoefficientList[Series[ (1+x^k)/(1-x-x^(k+1))-1/(1-x),{x,0,nn}],x],1],{k,1,nn}]]],0]+1
Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}] (* Gus Wiseman, Jun 23 2025 *)
A384889
Number of subsets of {1..n} with all equal lengths of maximal anti-runs (increasing by more than 1).
Original entry on oeis.org
1, 2, 4, 8, 14, 23, 37, 59, 93, 146, 230, 365, 584, 940, 1517, 2450, 3959, 6404, 10373, 16822, 27298, 44297, 71843, 116429, 188550, 305200, 493930, 799422, 1294108, 2095291, 3392736, 5493168, 8892148, 14390372, 23282110, 37660759, 60914308, 98528312, 159386110
Offset: 0
The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), with lengths (2,2,2), so is counted under a(12).
The a(0) = 1 through a(4) = 14 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{1,3} {1,2}
{2,3} {1,3}
{1,2,3} {1,4}
{2,3}
{2,4}
{3,4}
{1,2,3}
{2,3,4}
{1,2,3,4}
For partitions instead of subsets we have
A384888.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A047966 counts uniform partitions (equal multiplicities), ranks
A072774.
-
Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
-
lista(n)=Vec(sum(i=1,(n+1)\2,1/(1-x^(2*i-1)/(1-x)^(i-1))-1,1-x+O(x*x^n))/(1-x)^2) \\ Christian Sievers, Jun 20 2025
A384887
Number of integer partitions of n with all equal lengths of maximal gapless runs (decreasing by 0 or 1).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 9, 10, 14, 18, 21, 26, 35, 39, 46, 58, 68, 79, 97, 111, 131, 155, 177, 206, 246, 278, 318, 373, 423, 483, 563, 632, 722, 827, 931, 1058, 1209, 1354, 1528, 1736, 1951, 2188, 2475, 2762, 3097, 3488, 3886, 4342, 4876, 5414, 6038, 6741, 7482
Offset: 0
The partition y = (6,5,5,5,3,3,2,1) has maximal gapless runs ((6,5,5,5),(3,3,2,1)), with lengths (4,4), so y is counted under a(30).
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (2111) (222) (322) (71)
(11111) (321) (2221) (332)
(2211) (3211) (2222)
(21111) (22111) (3221)
(111111) (211111) (3311)
(1111111) (22211)
(32111)
(221111)
(2111111)
(11111111)
For distinct instead of equal lengths we have
A384884.
For subsets instead of strict partitions we have
A243815.
Without counting decreases by 0 we get
A384904.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356236 counts partitions with a neighborless part, singleton case
A356235.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A008284,
A044813,
A047993,
A325324,
A325325,
A356226,
A356230,
A356233,
A356234,
A384175,
A384177,
A384880.
-
Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]
A384885
Number of integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 13, 15, 18, 22, 28, 31, 38, 45, 53, 62, 74, 86, 105, 123, 146, 171, 208, 242, 290, 340, 399, 469, 552, 639, 747, 862, 999, 1150, 1326, 1514, 1736, 1979, 2256, 2560, 2909, 3283, 3721, 4191, 4726, 5311, 5973, 6691, 7510, 8396, 9395
Offset: 0
The partition y = (8,6,3,3,3,1) has maximal anti-runs ((8,6,3),(3),(3,1)), with lengths (3,1,2), so y is counted under a(24).
The partition z = (8,6,5,3,3,1) has maximal anti-runs ((8,6),(5,3),(3,1)), with lengths (2,2,2), so z is not counted under a(26).
The a(1) = 1 through a(9) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(3,1) (4,1) (4,2) (5,2) (5,3) (6,3)
(3,1,1) (5,1) (6,1) (6,2) (7,2)
(4,1,1) (3,3,1) (7,1) (8,1)
(4,2,1) (4,2,2) (4,4,1)
(5,1,1) (4,3,1) (5,2,2)
(5,2,1) (5,3,1)
(6,1,1) (6,2,1)
(7,1,1)
For subsets instead of strict partitions we have
A384177, for runs
A384175.
For equal instead of distinct lengths we have
A384888, for runs
A384887.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356236 counts partitions with a neighborless part, singleton case
A356235.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A008284,
A047966,
A242882,
A287170,
A325324,
A325325,
A329739,
A356226,
A356230,
A356234,
A384886.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,15}]
A385214
Number of subsets of {1..n} without all equal lengths of maximal runs of consecutive elements increasing by 1.
Original entry on oeis.org
0, 0, 0, 0, 2, 8, 25, 66, 159, 361, 791, 1688, 3539, 7328, 15040, 30669, 62246, 125896, 253975, 511357, 1028052
Offset: 0
The maximal runs of S = {1,2,4,5,6,8,9} are ((1,2),(4,5,6),(8,9)), with lengths (2,3,2), so S is counted under a(9).
The a(0) = 0 through a(5) = 8 subsets:
. . . . {1,2,4} {1,2,4}
{1,3,4} {1,2,5}
{1,3,4}
{1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,3,4,5}
The complement is counted by
A243815.
For distinct instead of equal lengths we have
A384176, complement
A384175.
For anti-runs instead of runs we have complement of
A384889, for partitions
A384888.
For permutations instead of subsets we have complement of
A384892, distinct
A384891.
For partitions instead of subsets we have complement of
A384904, strict
A384886.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A384177 counts subsets with all distinct lengths of maximal anti-runs, ranks
A384879.
A384887 counts partitions with equal lengths of gapless runs, distinct
A384884.
-
Table[Length[Select[Subsets[Range[n]],!SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
Showing 1-5 of 5 results.
Comments