Original entry on oeis.org
0, 1, 1, 2, 2, 5, 4, 11, 10, 22, 22, 50, 43, 104, 100, 209, 206, 446, 418, 914, 886, 1838, 1825, 3800, 3664, 7696, 7591, 15470, 15370, 31466, 30910, 63398, 62866, 127154, 126742, 256559, 254156, 515168, 513004, 1032104, 1029997, 2073626, 2063866, 4156118
Offset: 0
-
nmax = 60; 2^Range[0, nmax] - CoefficientList[Series[Product[(1 - x^k)/(1 - 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A133494
Diagonal of the array of iterated differences of A047848.
Original entry on oeis.org
1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0
From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
() (1) (2) (3)
(1,1) (1,2)
(1),(1) (2,1)
(1,1,1)
(1),(2)
(2),(1)
(1),(1,1)
(1,1),(1)
(1),(1),(1)
(End)
Splittings of partitions are
A323583.
Multiset partitions of partitions are
A001970.
Partitions of each part of a partition are
A063834.
Compositions of each part of a partition are
A075900.
Strict partitions of each part of a strict partition are
A279785.
Compositions of each part of a strict partition are
A304961.
Strict compositions of each part of a composition are
A307068.
Compositions of each part of a strict composition are
A336127.
-
[n eq 0 select 1 else 3^(n-1): n in [0..30]]; // G. C. Greubel, Nov 20 2023
-
a:= n-> ceil(3^(n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2020
-
CoefficientList[Series[(1 - 2 x)/(1 - 3 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
Join[{1}, 3^(Range[0, 30])] (* G. C. Greubel, Nov 20 2023 *)
-
a(n)=max(1,3^(n-1)) \\ Charles R Greathouse IV, Jul 07 2011
-
Vec((1-2*x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Oct 30 2015
-
[(3^n + 2*int(n==0))//3 for n in range(31)] # G. C. Greubel, Nov 20 2023
A100883
Number of partitions of n in which the sequence of frequencies of the summands is nondecreasing.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 11, 13, 19, 26, 36, 43, 64, 77, 102, 129, 169, 205, 268, 323, 413, 504, 629, 751, 947, 1131, 1384, 1661, 2024, 2393, 2919, 3442, 4136, 4884, 5834, 6836, 8162, 9531, 11262, 13155, 15493, 17981, 21138, 24472, 28571, 33066, 38475, 44305
Offset: 0
a(5) = 6 because, of the 7 unrestricted partitions of 5, only one, 2 + 2 + 1, has a decreasing sequence of frequencies. Two is used twice, but 1 is used only once.
-
b:= proc(n, i, t) option remember; `if`(n<0, 0, `if`(n=0, 1,
`if`(i=1, `if`(n>=t, 1, 0), `if`(i=0, 0, b(n, i-1, t)+
add(b(n-i*j, i-1, j), j=t..floor(n/i))))))
end:
a:= n-> b(n$2, 1):
seq(a(n), n=0..60); # Alois P. Heinz, Jul 03 2014
-
b[n_, i_, t_] := b[n, i, t] = If[n<0, 0, If[n == 0, 1, If[i == 1, If[n >= t, 1, 0], If[i == 0, 0, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t, Floor[n/i]}]]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n],OrderedQ[Length/@Split[#]]&]],{n,20}] (* Gus Wiseman, Jan 21 2019 *)
A075900
Expansion of g.f.: Product_{n>0} 1/(1 - 2^(n-1)*x^n).
Original entry on oeis.org
1, 1, 3, 7, 19, 43, 115, 259, 659, 1523, 3731, 8531, 20883, 47379, 113043, 259219, 609683, 1385363, 3245459, 7344531, 17028499, 38579603, 88585619, 199845267, 457864595, 1028904339, 2339763603, 5256820115, 11896157587, 26626389395
Offset: 0
From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 19 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(1),(1) (2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(1),(1),(1) (2,1,1)
(2),(2)
(3),(1)
(1,1,1,1)
(1,1),(2)
(1,2),(1)
(2),(1,1)
(2,1),(1)
(1,1),(1,1)
(1,1,1),(1)
(2),(1),(1)
(1,1),(1),(1)
(1),(1),(1),(1)
(End)
Partitions of partitions are
A001970.
Splittings with equal sums are
A074854.
Splittings of compositions are
A133494.
Splittings of partitions are
A323583.
Splittings with distinct sums are
A336127.
Starting with a reversed partition gives
A316245.
Starting with a partition instead of composition gives
A336136.
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(&*[1-2^(j-1)*x^j: j in [1..m+2]]) )); // G. C. Greubel, Jan 25 2024
-
oo := 101; t1 := mul(1/(1-x^n/2),n=1..oo): t2 := series(t1,x,oo-1): t3 := seriestolist(t2): A075900 := n->2^n*t3[n+1];
with(combinat); A075900 := proc(n) local i,t1,t2,t3; t1 := partition(n); t2 := 0; for i from 1 to nops(t1) do t3 := t1[i]; t2 := t2+2^(n-nops(t3)); od: t2; end;
-
b[n_]:= b[n]= Sum[d*2^(n - n/d), {d, Divisors[n]}];
a[0]= 1; a[n_]:= a[n]= 1/n*Sum[b[k]*a[n-k], {k,n}];
Table[a[n], {n,0,30}] (* Jean-François Alcover, Mar 20 2014, after Vladeta Jovovic, fixed by Vaclav Kotesovec, Mar 08 2018 *)
-
s(m,n):=if nVladimir Kruchinin, Sep 06 2014 */
-
{a(n)=polcoeff(prod(k=1,n,1/(1-2^(k-1)*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Jan 13 2013
-
{a(n)=polcoeff(exp(sum(k=1,n+1,x^k/(k*(1-2^k*x^k)+x*O(x^n)))),n)} \\ Paul D. Hanna, Jan 13 2013
-
m=80;
def A075900_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( 1/product(1-2^(j-1)*x^j for j in range(1,m+1)) ).list()
A075900_list(m) # G. C. Greubel, Jan 25 2024
A070933
Expansion of Product_{k>=1} 1/(1 - 2*t^k).
Original entry on oeis.org
1, 2, 6, 14, 34, 74, 166, 350, 746, 1546, 3206, 6550, 13386, 27114, 54894, 110630, 222794, 447538, 898574, 1801590, 3610930, 7231858, 14480654, 28983246, 58003250, 116054034, 232186518, 464475166, 929116402, 1858449178, 3717247638, 7434950062, 14870628026, 29742206138, 59485920374, 118973809798, 237950730522, 475905520474
Offset: 0
Sharon Sela (sharonsela(AT)hotmail.com), May 21 2002
From _Joerg Arndt_, Apr 28 2013: (Start)
There are a(3)=14 partitions of 3 with 2 ordered sorts. Here p:s stands for "part p of sort s":
01: [ 1:0 1:0 1:0 ]
02: [ 1:0 1:0 1:1 ]
03: [ 1:0 1:1 1:0 ]
04: [ 1:0 1:1 1:1 ]
05: [ 1:1 1:0 1:0 ]
06: [ 1:1 1:0 1:1 ]
07: [ 1:1 1:1 1:0 ]
08: [ 1:1 1:1 1:1 ]
09: [ 2:0 1:0 ]
10: [ 2:0 1:1 ]
11: [ 2:1 1:0 ]
12: [ 2:1 1:1 ]
13: [ 3:0 ]
14: [ 3:1 ]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from T. D. Noe)
- Dragomir Z. Djokovic, Poincaré series of some pure and mixed trace algebras of two generic matrices, Journal of Algebra, Vol. 309, No. 2 (2007), 654-671, arXiv:math/0609262.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Igor Pak, Greta Panova, and Damir Yeliussizov, On the largest Kronecker and Littlewood-Richardson coefficients, arXiv:1804.04693 [math.CO], 2018.
- N. J. A. Sloane, Transforms.
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-2*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Sep 07 2014
-
CoefficientList[ Series[ Product[1 / (1 - 2t^k), {k, 1, 35}], {t, 0, 35}], t]
CoefficientList[Series[E^Sum[2^k*x^k / (k*(1-x^k)), {k,1,30}],{x,0,30}],x] (* Vaclav Kotesovec, Sep 09 2014 *)
(O[x]^20 - 1/QPochhammer[2,x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
-
N=66; q='q+O('q^N); Vec(1/sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
A304961
Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).
Original entry on oeis.org
1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0
From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(2,1,1)
(3),(1)
(1,1,1,1)
(1,2),(1)
(2,1),(1)
(1,1,1),(1)
(End)
Starting with a reversed partition gives
A323583.
Starting with a partition gives
A336134.
Partitions of partitions are
A001970.
Splittings with equal sums are
A074854.
Splittings of compositions are
A133494.
Splittings with distinct sums are
A336127.
-
nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020
A323583
Number of ways to split an integer partition of n into consecutive subsequences.
Original entry on oeis.org
1, 1, 3, 7, 17, 37, 83, 175, 373, 773, 1603, 3275, 6693, 13557, 27447, 55315, 111397, 223769, 449287, 900795, 1805465, 3615929, 7240327, 14491623, 29001625, 58027017, 116093259, 232237583, 464558201, 929224589, 1858623819, 3717475031, 7435314013, 14871103069
Offset: 0
The a(3) = 7 ways to split an integer partition of 3 into consecutive subsequences are (3), (21), (2)(1), (111), (11)(1), (1)(11), (1)(1)(1).
-
b:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
end:
a:= n-> ceil(b(n$2)):
seq(a(n), n=0..33); # Alois P. Heinz, Jan 01 2023
-
Table[Sum[2^(Length[ptn]-1),{ptn,IntegerPartitions[n]}],{n,40}]
(* Second program: *)
(1/2) CoefficientList[1 - 1/QPochhammer[2, x] + O[x]^100 , x] (* Jean-François Alcover, Jan 02 2022, after Vladimir Reshetnikov in A070933 *)
A006952
Number of conjugacy classes in GL(n,3).
Original entry on oeis.org
1, 2, 8, 24, 78, 232, 720, 2152, 6528, 19578, 58944, 176808, 531128, 1593288, 4781952, 14345792, 43043622, 129130584, 387411144, 1162232520, 3486755688, 10460266224, 31380972784, 94142915640, 282429275616, 847287817866, 2541865038832, 7625595108432
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- W. D. Smith, personal communication.
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 162
- I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981).
-
/* The program does not work for n>12: */ [1] cat [NumberOfClasses(GL(n, 3)) : n in [1..12]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi, Jan 23 2013
-
with(numtheory):
b:= n-> add(phi(d)*3^(n/d), d=divisors(n))/n-1:
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*3^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1, N, (1-x^n)/(1-3*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 02 2013 */
A049314
The number k(GL(n,q)) of conjugacy classes in GL(n,q), q=4.
Original entry on oeis.org
1, 3, 15, 60, 252, 1005, 4080, 16305, 65460, 261828, 1048260, 4192980, 16775955, 67103520, 268430160, 1073720415, 4294945932, 17179782540, 68719391100, 274877559420, 1099511281260, 4398045120300, 17592184654365, 70368738597600, 281474971147680
Offset: 0
A049315
The number k(GL(n,q)) of conjugacy classes in GL(n,q), q=5.
Original entry on oeis.org
1, 4, 24, 120, 620, 3096, 15600, 77976, 390480, 1952380, 9764880, 48824280, 244136904, 1220683800, 6103496400, 30517481424, 152587794020, 762938966520, 3814696782120, 19073483892120, 95367429207720, 476837146020720, 2384185778835696, 11920928894086200
Offset: 0
- V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.
-
/* The program does not work for n>8: */ [1] cat [NumberOfClasses(GL(n,5)) : n in [1..8]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi, Jan 23 2013
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*5^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*5^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
-
x='x+O('x^30); Vec(prod(n=1, 30, (1-x^n)/(1-5*x^n))) \\ Altug Alkan, Sep 27 2018
Showing 1-10 of 54 results.
Next
Comments