A133494
Diagonal of the array of iterated differences of A047848.
Original entry on oeis.org
1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0
From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
() (1) (2) (3)
(1,1) (1,2)
(1),(1) (2,1)
(1,1,1)
(1),(2)
(2),(1)
(1),(1,1)
(1,1),(1)
(1),(1),(1)
(End)
Splittings of partitions are
A323583.
Multiset partitions of partitions are
A001970.
Partitions of each part of a partition are
A063834.
Compositions of each part of a partition are
A075900.
Strict partitions of each part of a strict partition are
A279785.
Compositions of each part of a strict partition are
A304961.
Strict compositions of each part of a composition are
A307068.
Compositions of each part of a strict composition are
A336127.
-
[n eq 0 select 1 else 3^(n-1): n in [0..30]]; // G. C. Greubel, Nov 20 2023
-
a:= n-> ceil(3^(n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2020
-
CoefficientList[Series[(1 - 2 x)/(1 - 3 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
Join[{1}, 3^(Range[0, 30])] (* G. C. Greubel, Nov 20 2023 *)
-
a(n)=max(1,3^(n-1)) \\ Charles R Greathouse IV, Jul 07 2011
-
Vec((1-2*x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Oct 30 2015
-
[(3^n + 2*int(n==0))//3 for n in range(31)] # G. C. Greubel, Nov 20 2023
A006951
Number of conjugacy classes in GL(n,2).
Original entry on oeis.org
1, 1, 3, 6, 14, 27, 60, 117, 246, 490, 1002, 1998, 4053, 8088, 16284, 32559, 65330, 130626, 261726, 523374, 1047690, 2095314, 4192479, 8384808, 16773552, 33546736, 67101273, 134202258, 268420086, 536839446, 1073710914, 2147420250, 4294904430, 8589807438
Offset: 0
For the 5 partitions of 4 (namely [1^4]; [2,1^2]; [2^2]; [3,1]; [4]) we have
(f(m) = 2^(m-1)*(2-1) = 2^(m-1) and)
f([1^4]) = 2^3 = 8,
f([2,1^2]) = 1*2^1 = 2,
f([2^2]) = 2^1 = 2,
f([3,1]) = 1*1 = 1,
f([4]) = 1,
the sum is 8+2+2+1+1 = 14 = a(4).
- _Joerg Arndt_, Jan 02 2013
- W. D. Smith, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 161
- I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981).
- N. J. A. Sloane, Transforms
-
/* The program does not work for n>19: */
[1] cat [NumberOfClasses(GL(n,2)): n in [1..19]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi Jan 24 2013
-
with(numtheory):
b:= n-> add(phi(d)*2^(n/d), d=divisors(n))/n-1:
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Oct 20 2012
-
b[n_] := Sum[EulerPhi[d]*2^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
Table[Sum[2^(Length[ptn]-Length[Split[ptn]]),{ptn,IntegerPartitions[n]}],{n,30}] (* Gus Wiseman, Jan 21 2019 *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-2*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 02 2013 */
A075900
Expansion of g.f.: Product_{n>0} 1/(1 - 2^(n-1)*x^n).
Original entry on oeis.org
1, 1, 3, 7, 19, 43, 115, 259, 659, 1523, 3731, 8531, 20883, 47379, 113043, 259219, 609683, 1385363, 3245459, 7344531, 17028499, 38579603, 88585619, 199845267, 457864595, 1028904339, 2339763603, 5256820115, 11896157587, 26626389395
Offset: 0
From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 19 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(1),(1) (2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(1),(1),(1) (2,1,1)
(2),(2)
(3),(1)
(1,1,1,1)
(1,1),(2)
(1,2),(1)
(2),(1,1)
(2,1),(1)
(1,1),(1,1)
(1,1,1),(1)
(2),(1),(1)
(1,1),(1),(1)
(1),(1),(1),(1)
(End)
Partitions of partitions are
A001970.
Splittings with equal sums are
A074854.
Splittings of compositions are
A133494.
Splittings of partitions are
A323583.
Splittings with distinct sums are
A336127.
Starting with a reversed partition gives
A316245.
Starting with a partition instead of composition gives
A336136.
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(&*[1-2^(j-1)*x^j: j in [1..m+2]]) )); // G. C. Greubel, Jan 25 2024
-
oo := 101; t1 := mul(1/(1-x^n/2),n=1..oo): t2 := series(t1,x,oo-1): t3 := seriestolist(t2): A075900 := n->2^n*t3[n+1];
with(combinat); A075900 := proc(n) local i,t1,t2,t3; t1 := partition(n); t2 := 0; for i from 1 to nops(t1) do t3 := t1[i]; t2 := t2+2^(n-nops(t3)); od: t2; end;
-
b[n_]:= b[n]= Sum[d*2^(n - n/d), {d, Divisors[n]}];
a[0]= 1; a[n_]:= a[n]= 1/n*Sum[b[k]*a[n-k], {k,n}];
Table[a[n], {n,0,30}] (* Jean-François Alcover, Mar 20 2014, after Vladeta Jovovic, fixed by Vaclav Kotesovec, Mar 08 2018 *)
-
s(m,n):=if nVladimir Kruchinin, Sep 06 2014 */
-
{a(n)=polcoeff(prod(k=1,n,1/(1-2^(k-1)*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Jan 13 2013
-
{a(n)=polcoeff(exp(sum(k=1,n+1,x^k/(k*(1-2^k*x^k)+x*O(x^n)))),n)} \\ Paul D. Hanna, Jan 13 2013
-
m=80;
def A075900_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( 1/product(1-2^(j-1)*x^j for j in range(1,m+1)) ).list()
A075900_list(m) # G. C. Greubel, Jan 25 2024
A304961
Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).
Original entry on oeis.org
1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0
From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(2,1,1)
(3),(1)
(1,1,1,1)
(1,2),(1)
(2,1),(1)
(1,1,1),(1)
(End)
Starting with a reversed partition gives
A323583.
Starting with a partition gives
A336134.
Partitions of partitions are
A001970.
Splittings with equal sums are
A074854.
Splittings of compositions are
A133494.
Splittings with distinct sums are
A336127.
-
nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020
A336127
Number of ways to split a composition of n into contiguous subsequences with different sums.
Original entry on oeis.org
1, 1, 2, 8, 16, 48, 144, 352, 896, 2432, 7168, 16896, 46080, 114688, 303104, 843776, 2080768, 5308416, 13762560, 34865152, 87818240, 241172480, 583008256, 1503657984, 3762290688, 9604956160, 23689428992, 60532195328, 156397207552, 385137770496, 967978254336
Offset: 0
The a(0) = 1 through a(4) = 16 splits:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(1),(2) (1,1,2)
(2),(1) (1,2,1)
(1),(1,1) (1),(3)
(1,1),(1) (2,1,1)
(3),(1)
(1,1,1,1)
(1),(1,2)
(1),(2,1)
(1,2),(1)
(2,1),(1)
(1),(1,1,1)
(1,1,1),(1)
The version with equal instead of different sums is
A074854.
Starting with a strict composition gives
A336128.
Starting with a partition gives
A336131.
Starting with a strict partition gives
A336132
Partitions of partitions are
A001970.
Partitions of compositions are
A075900.
Compositions of compositions are
A133494.
Compositions of partitions are
A323583.
-
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}]
A336128
Number of ways to split a strict composition of n into contiguous subsequences with different sums.
Original entry on oeis.org
1, 1, 1, 5, 5, 9, 29, 37, 57, 89, 265, 309, 521, 745, 1129, 3005, 3545, 5685, 8201, 12265, 16629, 41369, 48109, 77265, 107645, 160681, 214861, 316913, 644837, 798861, 1207445, 1694269, 2437689, 3326705, 4710397, 6270513, 12246521, 14853625, 22244569, 30308033, 43706705, 57926577, 82166105, 107873221, 148081785, 257989961, 320873065, 458994657, 628016225, 875485585, 1165065733
Offset: 0
The a(0) = 1 through a(5) = 5 splits:
() (1) (2) (3) (4) (5)
(12) (13) (14)
(21) (31) (23)
(1)(2) (1)(3) (32)
(2)(1) (3)(1) (41)
(1)(4)
(2)(3)
(3)(2)
(4)(1)
The a(6) = 29 splits:
(6) (1)(5) (1)(2)(3)
(15) (2)(4) (1)(3)(2)
(24) (4)(2) (2)(1)(3)
(42) (5)(1) (2)(3)(1)
(51) (1)(23) (3)(1)(2)
(123) (1)(32) (3)(2)(1)
(132) (13)(2)
(213) (2)(13)
(231) (2)(31)
(312) (23)(1)
(321) (31)(2)
(32)(1)
The version with equal instead of different sums is
A336130.
Starting with a non-strict composition gives
A336127.
Starting with a partition gives
A336131.
Starting with a strict partition gives
A336132.
Partitions of partitions are
A001970.
Partitions of compositions are
A075900.
Compositions of compositions are
A133494.
Set partitions with distinct block-sums are
A275780.
Compositions of partitions are
A323583.
Cf.
A006951,
A063834,
A271619,
A279375,
A305551,
A326519,
A317508,
A318684,
A336133,
A336134,
A336135.
-
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}]
A336130
Number of ways to split a strict composition of n into contiguous subsequences all having the same sum.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 15, 13, 23, 27, 73, 65, 129, 133, 241, 375, 519, 617, 1047, 1177, 1859, 2871, 3913, 4757, 7653, 8761, 13273, 16155, 28803, 30461, 50727, 55741, 87743, 100707, 152233, 168425, 308937, 315973, 500257, 571743, 871335, 958265, 1511583, 1621273, 2449259, 3095511, 4335385, 4957877, 7554717, 8407537, 12325993, 14301411, 20348691, 22896077, 33647199, 40267141, 56412983, 66090291, 93371665, 106615841, 155161833
Offset: 0
The a(1) = 1 through a(7) = 13 splits:
(1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,2,3) (5,2)
(1,3,2) (6,1)
(2,1,3) (1,2,4)
(2,3,1) (1,4,2)
(3,1,2) (2,1,4)
(3,2,1) (2,4,1)
(1,2),(3) (4,1,2)
(2,1),(3) (4,2,1)
(3),(1,2)
(3),(2,1)
The version with different instead of equal sums is
A336128.
Starting with a non-strict composition gives
A074854.
Starting with a partition gives
A317715.
Starting with a strict partition gives
A318683.
Set partitions with equal block-sums are
A035470.
Partitions of partitions are
A001970.
Partitions of compositions are
A075900.
Compositions of compositions are
A133494.
Compositions of partitions are
A323583.
Cf.
A006951,
A063834,
A271619,
A279375,
A305551,
A317508,
A318684,
A326519,
A336127,
A336132,
A336134,
A336135.
-
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
Table[Sum[Length[Select[splits[ctn],SameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}]
A074854
a(n) = Sum_{d|n} (2^(n-d)).
Original entry on oeis.org
1, 3, 5, 13, 17, 57, 65, 209, 321, 801, 1025, 3905, 4097, 12417, 21505, 53505, 65537, 233985, 262145, 885761, 1327105, 3147777, 4194305, 16060417, 17825793, 50339841, 84148225, 220217345, 268435457, 990937089, 1073741825, 3506503681
Offset: 1
Divisors of 6 = 1,2,3,6 and 6-1 = 5, 6-2 = 4, 6-3 = 3, 6-6 = 0. a(6) = 2^5 + 2^4 + 2^3 + 2^0 = 32 + 16 + 8 + 1 = 57.
G.f. = x + 3*x^2 + 5*x^3 + 13*x^4 + 17*x^5 + 57*x^6 + 65*x^7 + ...
a(14) = 1 + 2^7 + 2^12 + 2^13 = 12417. - _Gus Wiseman_, Jun 20 2018
The version looking at lengths instead of sums is
A101509.
The strictly increasing (or strictly decreasing) version is
A304961.
Starting with a partition gives
A317715.
Starting with a strict partition gives
A318683.
Requiring distinct instead of equal sums gives
A336127.
Starting with a strict composition gives
A336130.
Partitions of partitions are
A001970.
Splittings of compositions are
A133494.
Splittings of partitions are
A323583.
-
a[ n_] := If[ n < 1, 0, Sum[ 2^(n - d), {d, Divisors[n]}]] (* Michael Somos, Mar 28 2013 *)
-
a(n)=if(n<1,0,2^n*polcoeff(sum(k=1,n,2/(2-x^k),x*O(x^n)),n))
-
a(n) = sumdiv(n,d, 2^(n-d) ); /* Joerg Arndt, Mar 28 2013 */
a(14) corrected from 9407 to 12417 by
Gus Wiseman, Jun 20 2018
A336135
Number of ways to split an integer partition of n into contiguous subsequences with strictly decreasing sums.
Original entry on oeis.org
1, 1, 2, 5, 8, 16, 29, 50, 79, 135, 213, 337, 522, 796, 1191, 1791, 2603, 3799, 5506, 7873, 11154, 15768, 21986, 30565, 42218, 57917, 78968, 107399, 144932, 194889, 261061, 347773, 461249, 610059, 802778, 1053173, 1377325, 1793985, 2329009, 3015922, 3891142
Offset: 0
The a(1) = 1 through a(5) = 16 splittings:
(1) (2) (3) (4) (5)
(1,1) (2,1) (2,2) (3,2)
(1,1,1) (3,1) (4,1)
(2),(1) (2,1,1) (2,2,1)
(1,1),(1) (3),(1) (3,1,1)
(1,1,1,1) (3),(2)
(2,1),(1) (4),(1)
(1,1,1),(1) (2,1,1,1)
(2,2),(1)
(3),(1,1)
(3,1),(1)
(1,1,1,1,1)
(2,1),(1,1)
(2,1,1),(1)
(1,1,1),(1,1)
(1,1,1,1),(1)
The version with equal sums is
A317715.
The version with strictly increasing sums is
A336134.
The version with weakly increasing sums is
A336136.
The version with weakly decreasing sums is
A316245.
The version with different sums is
A336131.
Starting with a composition gives
A304961.
Starting with a strict partition gives
A318684.
Partitions of partitions are
A001970.
Partitions of compositions are
A075900.
Compositions of compositions are
A133494.
Compositions of partitions are
A323583.
-
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
Table[Sum[Length[Select[splits[ctn],Greater@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]
-
a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f, self()(r,min(m,t-1),t-1,0,0)) + self()(r,m-1,s,t,0) + if(t+m<=s, self()(r-m,min(m,r-m),s,t+m,1)))); recurse(n,n,n,0)} \\ Andrew Howroyd, Jan 18 2024
A336342
Number of ways to choose a partition of each part of a strict composition of n.
Original entry on oeis.org
1, 1, 2, 7, 11, 29, 81, 155, 312, 708, 1950, 3384, 7729, 14929, 32407, 81708, 151429, 305899, 623713, 1234736, 2463743, 6208978, 10732222, 22487671, 43000345, 86573952, 160595426, 324990308, 744946690, 1336552491, 2629260284, 5050032692, 9681365777
Offset: 0
The a(1) = 1 through a(4) = 11 ways:
(1) (2) (3) (4)
(1,1) (2,1) (2,2)
(1,1,1) (3,1)
(1),(2) (1),(3)
(2),(1) (2,1,1)
(1),(1,1) (3),(1)
(1,1),(1) (1,1,1,1)
(1),(2,1)
(2,1),(1)
(1),(1,1,1)
(1,1,1),(1)
Multiset partitions of partitions are
A001970.
Splittings of partitions are
A323583.
Splittings of partitions with distinct sums are
A336131.
Partitions:
- Partitions of each part of a partition are
A063834.
- Compositions of each part of a partition are
A075900.
- Strict partitions of each part of a partition are
A270995.
- Strict compositions of each part of a partition are
A336141.
Strict partitions:
- Partitions of each part of a strict partition are
A271619.
- Compositions of each part of a strict partition are
A304961.
- Strict partitions of each part of a strict partition are
A279785.
- Strict compositions of each part of a strict partition are
A336142.
Compositions:
- Partitions of each part of a composition are
A055887.
- Compositions of each part of a composition are
A133494.
- Strict partitions of each part of a composition are
A304969.
- Strict compositions of each part of a composition are
A307068.
Strict compositions:
- Partitions of each part of a strict composition are
A336342.
- Compositions of each part of a strict composition are
A336127.
- Strict partitions of each part of a strict composition are
A336343.
- Strict compositions of each part of a strict composition are
A336139.
-
Table[Length[Join@@Table[Tuples[IntegerPartitions/@ctn],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,10}]
-
seq(n)={[subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*numbpart(k) + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021
Showing 1-10 of 26 results.
Comments