cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A051731 Triangle read by rows: T(n, k) = 1 if k divides n, T(n, k) = 0 otherwise, for 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

T(n, k) is the number of partitions of n into k equal parts. - Omar E. Pol, Apr 21 2018
This triangle is the lower triangular array L in the LU decomposition of the square array A003989. - Peter Bala, Oct 15 2023

Examples

			The triangle T(n, k) begins:
  n\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
  1:  1
  2:  1  1
  3:  1  0  1
  4:  1  1  0  1
  5:  1  0  0  0  1
  6:  1  1  1  0  0  1
  7:  1  0  0  0  0  0  1
  8:  1  1  0  1  0  0  0  1
  9:  1  0  1  0  0  0  0  0  1
  10: 1  1  0  0  1  0  0  0  0  1
  11: 1  0  0  0  0  0  0  0  0  0  1
  12: 1  1  1  1  0  1  0  0  0  0  0  1
  13: 1  0  0  0  0  0  0  0  0  0  0  0  1
  14: 1  1  0  0  0  0  1  0  0  0  0  0  0  1
  15: 1  0  1  0  1  0  0  0  0  0  0  0  0  0  1
  ... Reformatted and extended. - _Wolfdieter Lang_, Nov 12 2014
		

Crossrefs

Cf. A000005 (row sums), A032741(n+2) (diagonal sums).
Cf. A243987 (partial sums per row).
Cf. A134546 (A004736 * T, matrix multiplication).
Variants: A113704, A077049, A077051.

Programs

  • Haskell
    a051731 n k = 0 ^ mod n k
    a051731_row n = a051731_tabl !! (n-1)
    a051731_tabl = map (map a000007) a048158_tabl
    -- Reinhard Zumkeller, Aug 13 2013
    
  • Magma
    [0^(n mod k): k in [1..n], n in [1..17]]; // G. C. Greubel, Jun 22 2024
    
  • Maple
    A051731 := proc(n, k) if n mod k = 0 then 1 else 0 end if end proc:
    # R. J. Mathar, Jul 14 2012
  • Mathematica
    Flatten[Table[If[Mod[n, k] == 0, 1, 0], {n, 20}, {k, n}]]
  • PARI
    for(n=1,17,for(k=1,n,print1(!(n%k)", "))) \\ Charles R Greathouse IV, Mar 14 2012
    
  • Python
    from math import isqrt, comb
    def A051731(n): return int(not (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))%(n-comb(a,2))) # Chai Wah Wu, Nov 13 2024
  • Sage
    A051731_row = lambda n: [int(k.divides(n)) for k in (1..n)]
    for n in (1..17): print(A051731_row(n)) # Peter Luschny, Jan 05 2018
    

Formula

{T(n, k)*k, k=1..n} setminus {0} = divisors(n).
Sum_{k=1..n} T(n, k)*k^i = sigma[i](n), where sigma[i](n) is the sum of the i-th power of the positive divisors of n.
Sum_{k=1..n} T(n, k) = A000005(n).
Sum_{k=1..n} T(n, k)*k = A000203(n).
T(n, k) = T(n-k, k) for k <= n/2, T(n, k) = 0 for n/2 < k <= n-1, T(n, n) = 1.
Rows given by A074854 converted to binary. Example: A074854(4) = 13 = 1101_2; row 4 = 1, 1, 0, 1. - Philippe Deléham, Oct 04 2003
From Paul Barry, Dec 05 2004: (Start)
Binomial transform (product by binomial matrix) is A101508.
Columns have g.f.: x^k/(1-x^(k+1)) (k >= 0). (End)
Matrix inverse of triangle A054525, where A054525(n, k) = MoebiusMu(n/k) if k|n, 0 otherwise. - Paul D. Hanna, Jan 09 2006
From Gary W. Adamson, Apr 15 2007, May 10 2007: (Start)
Equals A129372 * A115361 as infinite lower triangular matrices.
A054525 is the inverse of this triangle (as lower triangular matrix).
This triangle * [1, 2, 3, ...] = sigma(n) (A000203).
This triangle * [1/1, 1/2, 1/3, ...] = sigma(n)/n. (End)
From Reinhard Zumkeller, Nov 01 2009: (Start)
T(n, k) = 0^(n mod k).
T(n, k) = A000007(A048158(n, k)). (End)
From Mats Granvik, Jan 26 2010, Feb 10 2010, Feb 16 2010: (Start)
T(n, k) = A172119(n) mod 2.
T(n, k) = A175105(n) mod 2.
T(n, k) = Sum_{i=1..k-1} (T(n-i, k-1) - T(n-i, k)) for k > 1 and T(n, 1) = 1.
(Jeffrey O. Shallit kindly provided a clarification along with a proof of this formula.) (End)
A049820(n) = number of zeros in n-th row. - Reinhard Zumkeller, Mar 09 2010
The determinant of this matrix where T(n, n) has been swapped with T(1,k) is equal to the n-th term of the Mobius function. - Mats Granvik, Jul 21 2012
T(n, k) = Sum_{y=1..n} Sum_{x=1..n} [GCD((x/y)*(k/n), n) = k]. - Mats Granvik, Dec 17 2023

Extensions

Edited by Peter Luschny, Oct 18 2023

A075900 Expansion of g.f.: Product_{n>0} 1/(1 - 2^(n-1)*x^n).

Original entry on oeis.org

1, 1, 3, 7, 19, 43, 115, 259, 659, 1523, 3731, 8531, 20883, 47379, 113043, 259219, 609683, 1385363, 3245459, 7344531, 17028499, 38579603, 88585619, 199845267, 457864595, 1028904339, 2339763603, 5256820115, 11896157587, 26626389395
Offset: 0

Views

Author

N. J. A. Sloane, Oct 15 2002

Keywords

Comments

Number of compositions of partitions of n. a(3) = 7: 3, 21, 12, 111, 2|1, 11|1, 1|1|1. - Alois P. Heinz, Sep 16 2019
Also the number of ways to split an integer composition of n into consecutive subsequences with weakly decreasing (or increasing) sums. - Gus Wiseman, Jul 13 2020
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1, g(n) = 2^(n-1). - Seiichi Manyama, Aug 22 2020

Examples

			From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 19 splittings:
  ()  (1)  (2)      (3)          (4)
           (1,1)    (1,2)        (1,3)
           (1),(1)  (2,1)        (2,2)
                    (1,1,1)      (3,1)
                    (2),(1)      (1,1,2)
                    (1,1),(1)    (1,2,1)
                    (1),(1),(1)  (2,1,1)
                                 (2),(2)
                                 (3),(1)
                                 (1,1,1,1)
                                 (1,1),(2)
                                 (1,2),(1)
                                 (2),(1,1)
                                 (2,1),(1)
                                 (1,1),(1,1)
                                 (1,1,1),(1)
                                 (2),(1),(1)
                                 (1,1),(1),(1)
                                 (1),(1),(1),(1)
(End)
		

Crossrefs

Row sums of A327549.
The strict case is A304961.
Partitions of partitions are A001970.
Splittings with equal sums are A074854.
Splittings of compositions are A133494.
Splittings of partitions are A323583.
Splittings with distinct sums are A336127.
Starting with a reversed partition gives A316245.
Starting with a partition instead of composition gives A336136.

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(&*[1-2^(j-1)*x^j: j in [1..m+2]]) )); // G. C. Greubel, Jan 25 2024
    
  • Maple
    oo := 101; t1 := mul(1/(1-x^n/2),n=1..oo): t2 := series(t1,x,oo-1): t3 := seriestolist(t2): A075900 := n->2^n*t3[n+1];
    with(combinat); A075900 := proc(n) local i,t1,t2,t3; t1 := partition(n); t2 := 0; for i from 1 to nops(t1) do t3 := t1[i]; t2 := t2+2^(n-nops(t3)); od: t2; end;
  • Mathematica
    b[n_]:= b[n]= Sum[d*2^(n - n/d), {d, Divisors[n]}];
    a[0]= 1; a[n_]:= a[n]= 1/n*Sum[b[k]*a[n-k], {k,n}];
    Table[a[n], {n,0,30}] (* Jean-François Alcover, Mar 20 2014, after Vladeta Jovovic, fixed by Vaclav Kotesovec, Mar 08 2018 *)
  • Maxima
    s(m,n):=if nVladimir Kruchinin, Sep 06 2014 */
    
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-2^(k-1)*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Jan 13 2013
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n+1,x^k/(k*(1-2^k*x^k)+x*O(x^n)))),n)} \\ Paul D. Hanna, Jan 13 2013
    
  • SageMath
    m=80;
    def A075900_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 1/product(1-2^(j-1)*x^j for j in range(1,m+1)) ).list()
    A075900_list(m) # G. C. Greubel, Jan 25 2024

Formula

a(n) = Sum_{ partitions n = c_1 + ... + c_k } 2^(n-k). If p(n, m) = number of partitions of n into m parts, a(n) = Sum_{m=1..n} p(n, m)*2^(n-m).
G.f.: Sum_{n>=0} (a(n)/2^n)*x^n = Product_{n>0} 1/(1-x^n/2). - Vladeta Jovovic, Feb 11 2003
a(n) = 1/n*Sum_{k=1..n} A080267(k)*a(n-k). - Vladeta Jovovic, Feb 11 2003
G.f.: exp( Sum_{n>=1} x^n / (n*(1 - 2^n*x^n)) ). - Paul D. Hanna, Jan 13 2013
a(n) = s(1,n), a(0)=1, where s(m,n) = Sum_{k=m..n/2} 2^(k-1)*s(k, n-k) + 2^(n-1), s(n,n) = 2^(n-1), s(m,n)=0, m>. - Vladimir Kruchinin, Sep 06 2014
a(n) ~ 2^(n-2) * (Pi^2 - 6*log(2)^2)^(1/4) * exp(sqrt((Pi^2 - 6*log(2)^2)*n/3)) / (3^(1/4) * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Mar 09 2018

Extensions

More terms from Vladeta Jovovic, Feb 11 2003

A304961 Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Number of compositions of partitions of n into distinct parts. a(3) = 6: 3, 21, 12, 111, 2|1, 11|1. - Alois P. Heinz, Sep 16 2019
Also the number of ways to split a composition of n into contiguous subsequences with strictly decreasing sums. - Gus Wiseman, Jul 13 2020
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = (-1) * 2^(n-1). - Seiichi Manyama, Aug 22 2020

Examples

			From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
  ()  (1)  (2)    (3)        (4)
           (1,1)  (1,2)      (1,3)
                  (2,1)      (2,2)
                  (1,1,1)    (3,1)
                  (2),(1)    (1,1,2)
                  (1,1),(1)  (1,2,1)
                             (2,1,1)
                             (3),(1)
                             (1,1,1,1)
                             (1,2),(1)
                             (2,1),(1)
                             (1,1,1),(1)
(End)
		

Crossrefs

The non-strict version is A075900.
Starting with a reversed partition gives A323583.
Starting with a partition gives A336134.
Partitions of partitions are A001970.
Splittings with equal sums are A074854.
Splittings of compositions are A133494.
Splittings with distinct sums are A336127.

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020

Formula

G.f.: Product_{k>=1} (1 + A011782(k)*x^k).
a(n) ~ 2^n * exp(2*sqrt(-polylog(2, -1/2)*n)) * (-polylog(2, -1/2))^(1/4) / (sqrt(6*Pi) * n^(3/4)). - Vaclav Kotesovec, Sep 19 2019

A098407 Number of different hierarchical orderings that can be formed from n unlabeled elements with no repetition of subhierarchies.

Original entry on oeis.org

1, 1, 2, 6, 13, 33, 78, 186, 436, 1028, 2394, 5566, 12877, 29689, 68198, 156194, 356599, 811959, 1843956, 4177436, 9442166, 21295934, 47932572, 107677140, 241443980, 540441068, 1207689636, 2694452060, 6002389882, 13351958546, 29659179804, 65794744420, 145768641091
Offset: 0

Views

Author

Thomas Wieder, Sep 07 2004; corrected Sep 09 2004

Keywords

Comments

a(n) is the number of finite sets of compositions with total sum n. The case of constant sums is A358904, cf. A074854. The case of distinct sums is A304961, ordered A336127. The ordered version (sequences of distinct compositions) is A358907. - Gus Wiseman, Dec 12 2022

Examples

			Let a pair of parentheses () indicate a subhierarchy and let square brackets [] denote a set of subhierarchies, that is, a hierarchy (also called a society). Let the ranks be ordered from left to right and separated by a colon; e.g., (2:3) is a subhierarchy with three elements ("individuals") on top and two elements on the bottom rank.
Then the hierarchical ordering for n = 4 is composed of the following sets: [(1:1),(2)]; [(1),(3)]; [(1),(1:1:1)]; [(1),(2:1)]; [(1),(1:2)]; [(4)]; [(2:2)]; [(1:3)]; [(3:1)]; [(1:1:2)]; [(1:2:1)]; [(2:1:1)]; [(1:1:1:1)]; thus a(4) = 13.
For example, the following hierarchy is not allowed: [(1),(1),(1),(1)] because of the repetition of (1).
		

Crossrefs

A034691 counts multisets of compositions, ordered A133494.
A261049 counts sets of partitions, ordered A358906.

Programs

  • Maple
    main := proc(n::integer) local a, ListOfPartitions, NumberOfPartitions, APartition, APart, ASet, MultipliticityOfAPart, ndxprttn, ndxprt, Term, Produkt; with(combinat): with(ListTools): a := 0; ListOfPartitions := partition(n); NumberOfPartitions := nops(ListOfPartitions); for ndxprttn from 1 to NumberOfPartitions do APartition := ListOfPartitions[ndxprttn]; ASet := convert(APartition,set); Produkt := 1; for ndxprt from 1 to nops(ASet) do APart := op(ndxprt,ASet); MultipliticityOfAPart := Occurrences(APart, APartition); Term := 2^(APart-1); Term := binomial(Term,MultipliticityOfAPart); Produkt := Produkt * Term; # End of do-loop *** ndxprt ***. end do; a := a + Produkt; # End of do-loop *** ndxprttn ***. end do; print("n, a(n):",n,a); end proc;
    PartitionList := proc (n, k) # Authors: # Herbert S. Wilf and Joanna Nordlicht, # Source: # Lecture Notes "East Side West Side,..." # University of Pennsylvania, USA, 2002. # Available from http://www.cis.upenn.edu/~wilf/lecnotes.html # Berechnet die Partitionen von n mit k Summanden. local East, West; if n < 1 or k < 1 or n < k then RETURN([]) elif n = 1 then RETURN([[1]]) else if n < 2 or k < 2 or n < k then West := [] else West := map(proc (x) options operator, arrow; [op(x), 1] end proc, PartitionList(n-1, k-1)) end if; if k <= n-k then East := map(proc(y) options operator, arrow; map(proc (x) options operator, arrow; x+1 end proc, y) end proc, PartitionList(n-k, k)) else East := [] end if; RETURN([op(West), op(East)]) end if end proc;
    # second Maple program:
    series(exp(add((-1)^(j-1)/j*z^j/(1-2*z^j), j=1..40)), z, 40); # Cf. A102866; Vladeta Jovovic, Feb 19 2008
    # alternative Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n>1, 0, 1),
          add(b(n-i*j, i-1)*binomial(2^(i-1), j), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, May 22 2018
  • Mathematica
    terms = 32; CoefficientList[Product[(1 + x^k)^(2^(k-1)), {k, 1, terms+1}] + O[x]^(terms+1), x] // Rest (* Jean-François Alcover, Nov 10 2017, after Vladeta Jovovic *)
    nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^k*x^k/(k*(1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 08 2018 *)

Formula

a(n) = Sum_{ partitions n = s_1 + ... + s_n } Product_{ Set{s_i} } C(2^(s_i - 1), m(s_i)), where the sum runs over all partitions of n, the product runs over the set of parts of a given partition, s_i is the i-th part in the set of parts, C(k, l) denotes the binomial coefficient and m(s_i) is the multiplicity of part s_i in the given partition.
G.f.: Product_{k>=1} (1+x^k)^(2^(k-1)). - Vladeta Jovovic, Feb 19 2008
a(n) ~ 2^n * exp(sqrt(2*n) - 1/4 + c) / (sqrt(2*Pi) * 2^(3/4) * n^(3/4)), where c = Sum_{k>=2} -(-1)^k / (k*(2^k-2)) = -0.207530918644117743551169251314627032059... - Vaclav Kotesovec, Jun 08 2018
Weigh transform of A011782. - Alois P. Heinz, Jun 25 2018

Extensions

More terms from Alois P. Heinz, Apr 21 2012
a(0)=1 prepended by Alois P. Heinz, May 22 2018

A336127 Number of ways to split a composition of n into contiguous subsequences with different sums.

Original entry on oeis.org

1, 1, 2, 8, 16, 48, 144, 352, 896, 2432, 7168, 16896, 46080, 114688, 303104, 843776, 2080768, 5308416, 13762560, 34865152, 87818240, 241172480, 583008256, 1503657984, 3762290688, 9604956160, 23689428992, 60532195328, 156397207552, 385137770496, 967978254336
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(4) = 16 splits:
  ()  (1)  (2)    (3)        (4)
           (1,1)  (1,2)      (1,3)
                  (2,1)      (2,2)
                  (1,1,1)    (3,1)
                  (1),(2)    (1,1,2)
                  (2),(1)    (1,2,1)
                  (1),(1,1)  (1),(3)
                  (1,1),(1)  (2,1,1)
                             (3),(1)
                             (1,1,1,1)
                             (1),(1,2)
                             (1),(2,1)
                             (1,2),(1)
                             (2,1),(1)
                             (1),(1,1,1)
                             (1,1,1),(1)
		

Crossrefs

The version with equal instead of different sums is A074854.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Starting with a strict partition gives A336132
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}]

Formula

a(n) = Sum_{k=0..n} 2^(n-k) k! A008289(n,k).

A336130 Number of ways to split a strict composition of n into contiguous subsequences all having the same sum.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 15, 13, 23, 27, 73, 65, 129, 133, 241, 375, 519, 617, 1047, 1177, 1859, 2871, 3913, 4757, 7653, 8761, 13273, 16155, 28803, 30461, 50727, 55741, 87743, 100707, 152233, 168425, 308937, 315973, 500257, 571743, 871335, 958265, 1511583, 1621273, 2449259, 3095511, 4335385, 4957877, 7554717, 8407537, 12325993, 14301411, 20348691, 22896077, 33647199, 40267141, 56412983, 66090291, 93371665, 106615841, 155161833
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(7) = 13 splits:
  (1)  (2)  (3)    (4)    (5)    (6)        (7)
            (1,2)  (1,3)  (1,4)  (1,5)      (1,6)
            (2,1)  (3,1)  (2,3)  (2,4)      (2,5)
                          (3,2)  (4,2)      (3,4)
                          (4,1)  (5,1)      (4,3)
                                 (1,2,3)    (5,2)
                                 (1,3,2)    (6,1)
                                 (2,1,3)    (1,2,4)
                                 (2,3,1)    (1,4,2)
                                 (3,1,2)    (2,1,4)
                                 (3,2,1)    (2,4,1)
                                 (1,2),(3)  (4,1,2)
                                 (2,1),(3)  (4,2,1)
                                 (3),(1,2)
                                 (3),(2,1)
		

Crossrefs

The version with different instead of equal sums is A336128.
Starting with a non-strict composition gives A074854.
Starting with a partition gives A317715.
Starting with a strict partition gives A318683.
Set partitions with equal block-sums are A035470.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],SameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}]

Extensions

a(31)-a(60) from Max Alekseyev, Feb 14 2024

A358907 Number of finite sequences of distinct integer compositions with total sum n.

Original entry on oeis.org

1, 1, 2, 8, 18, 54, 156, 412, 1168, 3200, 8848, 24192, 66632, 181912, 495536, 1354880, 3680352, 9997056, 27093216, 73376512, 198355840, 535319168, 1443042688, 3884515008, 10445579840, 28046885824, 75225974912, 201536064896, 539339293824, 1441781213952
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 18 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((12))     ((13))
                 ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((112))
                 ((2)(1))   ((121))
                 ((1)(11))  ((211))
                 ((11)(1))  ((1111))
                            ((1)(3))
                            ((3)(1))
                            ((1)(12))
                            ((11)(2))
                            ((1)(21))
                            ((12)(1))
                            ((2)(11))
                            ((21)(1))
                            ((1)(111))
                            ((111)(1))
		

Crossrefs

For sets instead of sequences we have A098407, partitions A261049.
This is the strict case of A133494.
The case of distinct sums is A336127, constant sums A074854.
The version for sequences of partitions is A358906.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A218482 counts sequences of compositions with weakly decreasing lengths.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all different Omegas.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Maple
    g:= proc(n) option remember; ceil(2^(n-1)) end:
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t->
          add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 15 2022
  • Mathematica
    comps[n_]:=Join@@Permutations/@IntegerPartitions[n];
    Table[Length[Select[Join@@Table[Tuples[comps/@c],{c,comps[n]}],UnsameQ@@#&]],{n,0,10}]

Extensions

a(16)-a(29) from Alois P. Heinz, Dec 15 2022

A090879 a(n) = Sum_{d|n} d*2^(n-d).

Original entry on oeis.org

1, 4, 7, 20, 21, 94, 71, 328, 457, 1194, 1035, 7052, 4109, 17294, 33807, 83984, 65553, 389650, 262163, 1484820, 1949717, 4216854, 4194327, 29409304, 22020121, 67215386, 119799835, 350453788, 268435485, 1755807774, 1073741855
Offset: 1

Views

Author

Vladeta Jovovic, Feb 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Apply[Plus, d*2^(n - d)]]; Table[ f[n], {n, 1, 32}] (* Robert G. Wilson v, Feb 16 2004 *)

Formula

G.f.: Sum_{m>0} m*x^m/(1-(2*x)^m).

Extensions

More terms from Robert G. Wilson v, Feb 16 2004

A305552 Number of uniform normal multiset partitions of weight n.

Original entry on oeis.org

1, 1, 3, 5, 12, 17, 47, 65, 170, 277, 655, 1025, 2739, 4097, 10281, 17257, 41364, 65537, 170047, 262145, 660296, 1094457, 2621965, 4194305, 10898799, 16792721, 41945103, 69938141, 168546184, 268435457, 694029255, 1073741825, 2696094037, 4474449261, 10737451027
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. A multiset partition m is uniform if all parts have the same size, and normal if all parts are normal. The weight of m is the sum of sizes of its parts.

Examples

			The a(4) = 12 uniform normal multiset partitions:
{1111}, {1222}, {1122}, {1112}, {1233}, {1223}, {1123}, {1234},
{11,11}, {11,12}, {12,12},
{1,1,1,1}.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2^(n/k-1)+k-1,k],{k,Divisors[n]}],{n,35}]
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, binomial(2^(n/d - 1) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) = Sum_{d|n} binomial(2^(n/d - 1) + d - 1, d).

A358904 Number of finite sets of compositions with all equal sums and total sum n.

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 38, 64, 156, 260, 632, 1024, 2601, 4096, 10208, 16944, 40966, 65536, 168672, 262144, 656980, 1090240, 2620928, 4194304, 10862100, 16781584, 41940992, 69872384, 168403448, 268435456, 693528552, 1073741824, 2695006177, 4473400320, 10737385472
Offset: 0

Views

Author

Gus Wiseman, Dec 13 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 9 sets:
  {(1)}  {(2)}   {(3)}    {(4)}
         {(11)}  {(12)}   {(13)}
                 {(21)}   {(22)}
                 {(111)}  {(31)}
                          {(112)}
                          {(121)}
                          {(211)}
                          {(1111)}
                          {(2),(11)}
		

Crossrefs

This is the constant-sum case of A098407, ordered A358907.
The version for distinct sums is A304961, ordered A336127.
Allowing repetition gives A305552, ordered A074854.
The case of sets of partitions is A359041.
A001970 counts multisets of partitions.
A034691 counts multisets of compositions, ordered A133494.
A261049 counts sets of partitions, ordered A358906.

Programs

  • Mathematica
    Table[If[n==0,1,Sum[Binomial[2^(d-1),n/d],{d,Divisors[n]}]],{n,0,30}]
  • PARI
    a(n) = if (n, sumdiv(n, d, binomial(2^(d-1), n/d)), 1); \\ Michel Marcus, Dec 14 2022

Formula

a(n>0) = Sum_{d|n} binomial(2^(d-1),n/d).
Showing 1-10 of 15 results. Next