cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A110152 G.f.: A(x) = Product_{n>=1} 1/(1 - 2^n*x^n)^(2/2^n).

Original entry on oeis.org

1, 2, 6, 14, 36, 78, 192, 406, 942, 2018, 4512, 9450, 21178, 43950, 95532, 200398, 431356, 892518, 1917572, 3950614, 8410230, 17398466, 36648980, 75326754, 159199004, 326471706, 683028924, 1404145162, 2930071798, 5993625942
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2005

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 14*x^3 + 36*x^4 + 78*x^5 +...
where
A(x) = 1/((1-2*x) * (1-4*x^2)^(1/2) * (1-8*x^3)^(1/4) * (1-16*x^4)^(1/8) *...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - 2^k*x^k)^(2/2^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
  • PARI
    a(n)=polcoeff(prod(k=1,n,1/(1-2^k*x^k+x*O(x^n))^(2/2^k)),n)
    
  • PARI
    A090879(n) = sumdiv(n,d, d*2^(n-d))
    a(n)=local(A);A=exp(sum(k=1,n,2*A090879(k)*x^k/k)+x*O(x^n));polcoeff(A,n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Jan 05 2014

Formula

G.f.: exp( Sum_{n>=1} 2*A090879(n)*x^n/n ), where A090879(n) = Sum_{d|n} d*2^(n-d). - Paul D. Hanna, Jan 05 2014

A356539 a(n) = Sum_{d|n} d * 3^(n-d).

Original entry on oeis.org

1, 5, 12, 49, 86, 492, 736, 3977, 8757, 34030, 59060, 384924, 531454, 2672528, 6672552, 26093113, 43046738, 261646137, 387420508, 2181624374, 4682526672, 17435870644, 31381059632, 204908769276, 299863458511, 1412168408630, 3392641222200, 13912336721584
Offset: 1

Views

Author

Seiichi Manyama, Aug 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # * 3^(n - #) &]; Array[a, 30] (* Amiram Eldar, Aug 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d*3^(n-d));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-(3*x)^k)))

Formula

G.f.: Sum_{k>=1} k * x^k/(1 - (3 * x)^k).
If p is prime, a(p) = p + 3^(p-1).

A356538 Expansion of e.g.f. Product_{k>0} 1/(1 - (2 * x)^k)^(1/2^k).

Original entry on oeis.org

1, 1, 5, 27, 249, 2085, 30645, 354375, 6542865, 108554985, 2330525925, 45331607475, 1288779532425, 28889867731725, 876160258298325, 25315531795929375, 860642393272286625, 26527678331237708625, 1063065483349950205125, 36393649136002135852875
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(2*x)^k)^(1/2^k))))
    
  • PARI
    a090879(n) = sumdiv(n, d, d*2^(n-d));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, a090879(j)*v[i-j+1]/(i-j)!)); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A090879(k) * a(n-k)/(n-k)!.

A358660 a(n) = Sum_{d|n} d * (n/d)^(n-d).

Original entry on oeis.org

1, 4, 12, 76, 630, 7968, 117656, 2105416, 43048917, 1000781420, 25937424612, 743130116112, 23298085122494, 793742455829456, 29192926758107760, 1152930300766980112, 48661191875666868498, 2185915267189632382650, 104127350297911241532860
Offset: 1

Views

Author

Seiichi Manyama, Dec 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Total[Map[#*(n/#)^(n - #) &, Divisors[n]]];
    Table[a[n],{n,1,100}]
    a[n_] := DivisorSum[n, (n/#)^(n-#)*# &]; Array[a, 19] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d*(n/d)^(n-d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-k^(k-1)*x^k)^2))

Formula

G.f.: Sum_{k>=1} k^(k-1) * x^k/(1 - k^(k-1) * x^k)^2.
If p is prime, a(p) = p + p^(p-1).
Showing 1-4 of 4 results.