cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A356540 Expansion of e.g.f. Product_{k>0} 1/(1 - (3 * x)^k)^(1/3^k).

Original entry on oeis.org

1, 1, 6, 40, 496, 5400, 114400, 1760080, 47671680, 1090230400, 34312096000, 916877068800, 39605683532800, 1211405062067200, 55580939301888000, 2260295506653184000, 115398744818925568000, 4928605977341190144000, 305987190350116667392000
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(3*x)^k)^(1/3^k))))
    
  • PARI
    a356539(n) = sumdiv(n, d, d*3^(n-d));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, a356539(j)*v[i-j+1]/(i-j)!)); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A356539(k) * a(n-k)/(n-k)!.

A359203 a(n) = Sum_{d|n} (n/d) * 3^(n-d).

Original entry on oeis.org

1, 7, 28, 127, 406, 1756, 5104, 20575, 61237, 230122, 649540, 2579932, 6908734, 26044984, 74578888, 269985151, 731794258, 2799670555, 7360989292, 27392181562, 75948764752, 268482753172, 721764371008, 2742292424188, 7078172334031, 25701091008418, 71173405454680
Offset: 1

Views

Author

Seiichi Manyama, Dec 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 3^(n-#)*n/# &]; Array[a, 27] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, n/d*3^(n-d));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(3*x)^k)^2))

Formula

G.f.: Sum_{k>=1} x^k/(1 - (3 * x)^k)^2.

A358660 a(n) = Sum_{d|n} d * (n/d)^(n-d).

Original entry on oeis.org

1, 4, 12, 76, 630, 7968, 117656, 2105416, 43048917, 1000781420, 25937424612, 743130116112, 23298085122494, 793742455829456, 29192926758107760, 1152930300766980112, 48661191875666868498, 2185915267189632382650, 104127350297911241532860
Offset: 1

Views

Author

Seiichi Manyama, Dec 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Total[Map[#*(n/#)^(n - #) &, Divisors[n]]];
    Table[a[n],{n,1,100}]
    a[n_] := DivisorSum[n, (n/#)^(n-#)*# &]; Array[a, 19] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d*(n/d)^(n-d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-k^(k-1)*x^k)^2))

Formula

G.f.: Sum_{k>=1} k^(k-1) * x^k/(1 - k^(k-1) * x^k)^2.
If p is prime, a(p) = p + p^(p-1).
Showing 1-3 of 3 results.